Activation of N-methyl-d-aspartate subtype glutamate receptors (NMDARs) is required for long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission at hippocampal CA1 synapses, the proposed cellular substrates of learning and memory. However, little is known about how activation of NMDARs leads to these two opposing forms of synaptic plasticity. Using hippocampal slice preparations, we showed that selectively blocking NMDARs that contain the NR2B subunit abolishes the induction of LTD but not LTP.
View Article and Find Full Text PDFBased on recent reports describing enhancing actions of arylalkylamines (fendiline [N-(3,3-diphenylpropyl)-alpha-methylbenzylamine] and prenylamine [N-(3,3-diphenylpropyl)-alpha-methylphenethylamine]), amino acids (L-phenylalanine, L-leucine and L-isoleucine), and dipeptides (L-Phe-Phe and L-Phe-Leu) on baclofen-induced responses in cortical slices, we have examined whether these compounds might act as positive allosteric modulators at GABA(B) receptors. Unlike the previously described allosteric GABA(B) receptor modulator CGP7930 (2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol), these compounds did not enhance GABA(B) receptor-mediated guanosine 5'-O-(3-thiotriphosphate) [GTP(gamma)35S] binding in native or recombinant cell membrane preparations. Similarly, in a competition binding assay using the antagonist radioligand [3H]CGP62349, CGP7930, but not the other compounds, enhanced the affinities of gamma-aminobutyric acid (GABA) for native GABA(B) receptors from rat brain cortex.
View Article and Find Full Text PDFN,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds are described as novel allosteric enhancers of GABA(B) receptor function. They potentiate GABA-stimulated guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding to membranes from a GABA(B)(1b/2)-expressing Chinese hamster ovary cell line at low micromolar concentrations, but do not stimulate [35S]GTPgammaS binding by themselves. Similar effects of GS39783 are seen on native GABA(B) receptors in rat brain membranes.
View Article and Find Full Text PDF