Publications by authors named "Mario E Valdes-Tresanco"

Sticholysin II (StII), a pore-forming toxin from the marine anemone Stichodactyla helianthus, enhances an antigen-specific cytotoxic T lymphocyte (CTL) response when co-encapsulated in liposomes with a model antigen. This capacity does not depend exclusively on its pore-forming activity and is partially supported by its ability to activate Toll-like receptor 4 (TLR4) in dendritic cells, presumably by interacting with this receptor or by triggering signaling cascades upon binding to lipid membrane. In order to investigate whether the lipid binding capacity of StII is required for immunomodulation, we designed a mutant in which the aromatic amino acids from the interfacial binding site Trp110, Tyr111 and Trp114 were substituted by Ala.

View Article and Find Full Text PDF

Leishmaniasis is a neglected tropical disease; there is currently no vaccine and treatment is reliant upon a handful of drugs suffering from multiple issues including toxicity and resistance. There is a critical need for development of new fit-for-purpose therapeutics, with reduced toxicity and targeting new mechanisms to overcome resistance. One enzyme meriting investigation as a potential drug target in is M17 leucyl-aminopeptidase (LAP).

View Article and Find Full Text PDF

Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems.

View Article and Find Full Text PDF

The number of applications for nanobodies is steadily expanding, positioning these molecules as fast-growing biologic products in the biotechnology market. Several of their applications require protein engineering, which in turn would greatly benefit from having a reliable structural model of the nanobody of interest. However, as with antibodies, the structural modeling of nanobodies is still a challenge.

View Article and Find Full Text PDF

Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes.

View Article and Find Full Text PDF

We present NbThermo-a first-in-class database that collects melting temperatures (Tm), amino acid sequences and several other categories of useful data for hundreds of nanobodies (Nbs), compiled from an extensive literature search. This so-far unique database currently contains up-to-date, manually curated data for 564 Nbs. It represents a contribution to efforts aimed at developing new algorithms for reliable Tm prediction to assist Nb engineering for a wide range of applications of these unique biomolecules.

View Article and Find Full Text PDF

Computational alanine scanning with the molecular mechanics generalized Born surface area (MM/GBSA) method constitutes a widely used approach for identifying critical residues at protein-protein interfaces. Despite its popularity, the MM/GBSA method still has certain drawbacks due to its dependence on many factors. Here, we performed a systematical study on the impact of four different parameters, namely, the internal dielectric constant, the generalized Born model, the entropic term, and the inclusion of structural waters on the accuracy of computational alanine scanning calculations with the MM/GBSA method.

View Article and Find Full Text PDF

Bufadienolides are steroids that inhibit Na/K-ATPase; recent evidence shows that bufalin inhibits the activity of porcine aminopeptidase N (pAPN). We evaluated the selectivity of some bufadienolides on metallo-aminopeptidases. Among the enzymes of the M1 and M17 families, pAPN and porcine aminopeptidase A (pAPA) were the only targets of some bufadienolides.

View Article and Find Full Text PDF
Article Synopsis
  • Vps34 is the only isoform of the PI3K family in fungi, making it a key target for developing treatments against pathogenic fungi, with a focus on safer specific inhibitors rather than cross-reactive human inhibitors.
  • The study details the creation of four Linear Interaction Energy (LIE) models to estimate the binding free energy of Vps34-inhibitor complexes, demonstrating good predictive capability.
  • The findings suggest that the LIE-D models are particularly effective in evaluating the contributions to binding free energy, providing a useful tool for researchers aiming to identify new Vps34 inhibitors for cancer treatment and antimicrobial drug development.*
View Article and Find Full Text PDF
Article Synopsis
  • Molecular mechanics/Poisson-Boltzmann surface area (MM/PB(GB)SA) is a widely used method to estimate binding free energies due to its balance of accuracy and computational efficiency, especially for large systems.
  • The new tool, gmx_MMPBSA, enhances the calculation of end-state free energies from GROMACS molecular dynamics trajectories and offers various features like different solvation models and binding free energy decomposition.
  • Additional tools gmx_MMPBSA_test and gmx_MMPBSA_ana improve usability by providing examples and quick access to graphical data, and the latest version is available for free online with documentation and tutorials.
View Article and Find Full Text PDF

Phosphoprotein phosphatase (PPP) enzymes are ubiquitous proteins involved in cellular signaling pathways and other functions. Here we have traced the origin of the PPP sequences of Eukaryotes and their radiation. Using a bacterial PPP Hidden Markov Model (HMM) we uncovered "BacterialPPP-Like" sequences in Archaea.

View Article and Find Full Text PDF
Article Synopsis
  • Phosphoprotein phosphatases (PPP) are a part of the PPP Sequence family within the broader metallophosphoesterase (MPE) superfamily, but the evolutionary transitions leading from ancestral MPEs to PPPs are not fully understood.!
  • The study employs various methods such as structural analysis, phylogenetic tree analysis, and mutagenesis to trace the evolutionary pathway from MPEs to the PPP Sequence family, identifying members across different bacterial groups.!
  • Results indicate that a crucial change in substrate binding—specifically the introduction of the "2-Arg-Clamp"—was pivotal for the evolution of PPPs, allowing them to bind novel substrates and leading to increased specificity within different PPP groups.!
View Article and Find Full Text PDF

AMDock (Assisted Molecular Docking) is a user-friendly graphical tool to assist in the docking of protein-ligand complexes using Autodock Vina and AutoDock4, including the option of using the Autodock4Zn force field for metalloproteins. AMDock integrates several external programs (Open Babel, PDB2PQR, AutoLigand, ADT scripts) to accurately prepare the input structure files and to optimally define the search space, offering several alternatives and different degrees of user supervision. For visualization of molecular structures, AMDock uses PyMOL, starting it automatically with several predefined visualization schemes to aid in setting up the box defining the search space and to visualize and analyze the docking results.

View Article and Find Full Text PDF

Bestatin and bacitracin are inhibitors of metallo aminopeptidases and bacterial proteases. However, their effects on other human peptidases, like dipeptidyl peptidase IV (DPP-IV, EC 3.4.

View Article and Find Full Text PDF

Metallo-aminopeptidases (mAPs) control many physiological processes. They are classified in different families according to structural similarities. Neutral mAPs catalyze the cleavage of neutral amino acids from the N-terminus of proteins or peptide substrates; they need one or two metallic cofactors in their active site.

View Article and Find Full Text PDF

Alzheimer's disease is a progressive neurodegenerative disorder characterized by the abnormal processing of the Tau and the amyloid precursor proteins. The unusual aggregation of Tau is based on the formation of intermolecular β-sheets through two motifs: VQIINK and VQIVYK . Phenylthiazolyl-hydrazides (PTHs) are capable of inhibiting/disassembling Tau aggregates.

View Article and Find Full Text PDF

Membrane alanyl and glutamyl aminopeptidases (APN and APA, respectively) are established targets for the development of biomedical tools in human pathologies. APN overexpression correlates with the progression of tumours, including melanoma. Bacitracin, widely used as a topical antibiotic, inhibits subtilisin-like serine peptidases and disulphide isomerases.

View Article and Find Full Text PDF

Sticholysins are pore-forming toxins of biomedical interest and represent a prototype of proteins acting through the formation of protein-lipid or toroidal pores. Peptides spanning the N-terminus of sticholysins can mimic their permeabilizing activity and, together with the full-length toxins, have been used as a tool to understand the mechanism of pore formation in membranes. However, the lytic mechanism of these peptides and the lipid shape modulating their activity are not completely clear.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia among the elderly and has become a leading public health concern worldwide. It represents a huge economic and psychological burden to caregivers and families. The presence of extracellular amyloid beta (Aβ) plaques is one of the hallmarks of this neurodegenerative disorder.

View Article and Find Full Text PDF

The Escherichia coli neutral M1-aminopeptidase (ePepN) is a novel target identified for the development of antimicrobials. Here we describe a solid-phase multicomponent approach which enabled the discovery of potent ePepN inhibitors. The on-resin protocol, developed in the frame of the Distributed Drug Discovery (D3) program, comprises the implementation of parallel Ugi-azide four-component reactions with resin-bound amino acids, thus leading to the rapid preparation of a focused library of tetrazole-peptidomimetics (TPMs) suitable for biological screening.

View Article and Find Full Text PDF

Neutral metallo-aminopeptidase (APN) catalyzes the cleavage of neutral and basic amino acids from the N-terminus of protein or peptide substrates. APN expression is dysregulated in inflammatory diseases as well as in several types of cancer. Therefore, inhibitors of APN may be effective against cancer and inflammation.

View Article and Find Full Text PDF

The calculation of absolute binding affinities for protein-inhibitor complexes remains as one of the main challenges in computational structure-based ligand design. The present work explored the calculations of surface fractal dimension (as a measure of surface roughness) and the relationship with experimental binding free energies of Plasmepsin II complexes. Plasmepsin II is an attractive target for novel therapeutic compounds to treat malaria.

View Article and Find Full Text PDF