Antimicrobial resistance refers to the ability of pathogens to develop resistance to drugs designed to eliminate them, making the infections they cause more difficult to treat and increasing the likelihood of disease diffusion and mortality. As such, antimicrobial resistance is considered as one of the most significant and universal challenges to both health and society, as well as the environment. In our research, we employ the explainable artificial intelligence paradigm to identify the factors that most affect the onset of antimicrobial resistance in diversified territorial contexts, which can vary widely from each other in terms of climatic, economic and social conditions.
View Article and Find Full Text PDFCurr Treat Options Cardiovasc Med
February 2020
Purpose Of The Review: This review will explore frequently encountered diagnostic challenges and summarize the role cardiac imaging plays in defining the boundaries of what constitutes the athlete's heart syndrome versus pathology.
Recent Findings: Investigations have predominantly focused on differentiating the athlete's heart from potentially lethal pathological conditions that may produce a similar cardiac morphology. Guidelines have identified criteria for identifying definitive pathology, but difficulty arises when individuals fall in the gray zone of expected athletic remodeling and pathology.
Rectangular DNA origami functionalized with thiols in each of the four corners immobilizes by self-assembly between lithographically patterned gold nanodots on a silicon oxide surface.
View Article and Find Full Text PDFA helical hexapeptide was designed to link in a rigid parallel orientation to a gold surface. The peptide sequence of the newly synthesized compound is characterized by the presence of two 4-amino-1,2-dithiolane-4-carboxylic acid (Adt) residues (positions 1 and 4) to promote a bidentate interaction with the gold surface, two L-Ala residues (positions 2 and 5) and two-aminoisobutyric acid (Aib) residues (positions 3 and 6) to favor a high population of the 310-helix conformation. Furthermore, a ferrocenoyl (Fc) probe was inserted at the N-terminus to investigate the electronic conduction properties of the peptide.
View Article and Find Full Text PDFObjective: To evaluate the feasibility and usability of an assistive technology (AT) prototype designed to be operated with conventional/alternative input channels and a P300-based brain-computer interface (BCI) in order to provide users who have different degrees of muscular impairment resulting from amyotrophic lateral sclerosis (ALS) with communication and environmental control applications.
Design: Proof-of-principle study with a convenience sample.
Setting: An apartment-like space designed to be fully accessible by people with motor disabilities for occupational therapy, placed in a neurologic rehabilitation hospital.
Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates.
View Article and Find Full Text PDFInteractions between peptides are relevant from a biomedical point of view, in particular for the role played by their aggregates in different important pathologies, and also because peptide aggregates represent promising scaffolds for innovative materials. In the present article, the aggregation properties of the homo-peptides formed by α-aminoisobutyric acid (U) residues are discussed. The peptides investigated have chain lengths between six and 15 residues and comprise benzyl and naphthyl groups at the N- and C-termini, respectively.
View Article and Find Full Text PDFThe aggregation properties of two Ala-based pentapeptides were investigated by spectroscopic techniques and molecular dynamics (MD) simulations. The two peptides, both functionalized at the N-terminus with a pyrenyl group, differ in the insertion of an α-aminoisobutyric acid residue at position 4. We showed that this single modification of the homo-peptide sequence inhibits the aggregation of the pentapeptide in aqueous solutions.
View Article and Find Full Text PDFA bioinspired approach is applied to photoelectric conversion devices. A 3(10)-helical hexapeptide bearing a pyrene unit is immobilized on a gold-covered TiO2 surface. The device is integrated for the first time in a dye-sensitized solar cell, exhibiting stability after several measurements.
View Article and Find Full Text PDFWe report on the use of spider fibers as micro- and nanostencils for the fabrication of nanogaps between ultrathin conductive electrodes, and as molds for fabrication of micro- and nanowires by deposition of evaporated gold. Atomic force microscopy (AFM) morphological characterization of the nanogaps is described, together with the measurement of the electrical behavior of both nanogaps and nanowires. Gaps as narrow as 20 nm, comparable to e-beam-fabricated gaps, with electrical resistance higher than 10(13) Ω have been obtained; while conductive fibers ranging from 350 nm to 1.
View Article and Find Full Text PDFThe photocurrent generation properties of mono- and bi-component peptide-based self-assembled monolayers (SAMs) immobilized on a gold surface were studied by electrochemical and spectroscopic techniques. The peptides investigated comprised almost exclusively C-tetrasubstituted -amino acids. These non-coded residues, because of their unique conformational properties, forced the peptide backbone to attain a helical conformation, as confirmed by X-ray crystal structure and CD determinations in solution.
View Article and Find Full Text PDF