Lately, nickel oxide nanoparticles (NiO NPs) have been employed in different industrial and biomedical fields. Several studies have reported that NiO NPs may affect the development of reproductive organs inducing oxidative stress and, resulting in male infertility. We investigated the effects of NiO NPs on porcine pre-pubertal Sertoli cells (SCs) which undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposure at two subtoxic doses of NiO NPs of 1 μg/ml and 5 μg/ml.
View Article and Find Full Text PDFIntroduction: Among substances released into the environment by anthropogenic activities, the heavy metal cadmium (Cd) is known to induce severe testicular injury causing male subfertility/infertility. Zinc (Zn) is another heavy metal that, unlike Cd, is physiologically present in the testis, being essential for spermatogenesis. We aimed to examine the possibility that 50 µM ZnCl could counteract the toxic effects induced by Cd in an model of porcine prepubertal Sertoli cells (SCs) exposed to both subtoxic (5 μM) and toxic (10 μM) concentrations of CdCl for 48 h.
View Article and Find Full Text PDFω-3 Polyunsaturated fatty acids (PUFAs) have been found to exert many actions, including neuroprotective effects. In this regard, the exact molecular mechanisms are not well understood. Parkinson's disease (PD) is the second most common age-related neurodegenerative disease.
View Article and Find Full Text PDFConventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7 cDC1 expressed IDO1 that was dependent on IRF8.
View Article and Find Full Text PDFSertoli cells (SeC) isolated from porcine testes have shown direct effects on muscle precursor cells sustaining C2C12 myoblasts proliferation and inhibiting oxidative stress and apoptosis in the early phase of the differentiation process, and stimulating myoblast fusion into myotubes and the expression of markers of myogenic differentiation in the late phase. This suggested that the cocktail of factors secreted by SeC stimulates proliferation in myoblasts without weakening their myogenic potential resulting in the formation of the critical myoblast amount necessary to rebuild the required muscle mass upon a damage. Here, we show that co-culturing C2C12 myoblasts with high doses of SeC microencapsulated in clinical grade alginate-based microcapsules (MC-SeC) for three days in differentiation medium (DM) translates into increased cell numbers and almost absence of myotube formation.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in gene translating in lack of functional dystrophin and resulting in susceptibility of myofibers to rupture during contraction. Inflammation and fibrosis are critical hallmarks of DMD muscles, which undergo progressive degeneration leading to loss of independent ambulation in childhood and death by early adulthood. We reported that intraperitoneal injection of microencapsulated Sertoli cells (SeC) in dystrophic mice translates into recovery of muscle morphology and performance thanks to anti-inflammatory effects and induction of the dystrophin paralogue, utrophin at the muscle level, opening new avenues in the treatment of DMD.
View Article and Find Full Text PDFThe incidence of cancer in pre-pubertal boys has significantly increased and, it has been recognized that the gonado-toxic effect of the cancer treatments may lead to infertility. Here, we have evaluated the effects on porcine neonatal Sertoli cells (SCs) of three commonly used chemotherapy drugs; cisplatin, 4-Hydroperoxycyclophosphamide and doxorubicin. All three drugs induced a statistical reduction of 5-hydroxymethylcytosine in comparison with the control group, performed by Immunofluorescence Analysis.
View Article and Find Full Text PDF() leaf decoction, a traditional remedy prepared in North by the Hmong ethnic group, is a tea extract rich in bioactive compounds that may have therapeutic effects in arthritis and backache. Indeed, it has been demonstrated that is able to inhibit Th17 lymphocytes development and to protect mice in an experimental model of collagen-induced arthritis. By resorting to macrophage models of inflammation and osteoclastogenesis, we showed that extract significantly reduced nitric oxide synthase 2 (NOS2) activity and IL-6 production by RAW 264.
View Article and Find Full Text PDFIndoleamine 2,3-dioxygenases (IDOs) degrade l-tryptophan to kynurenines and drive the de novo synthesis of nicotinamide adenine dinucleotide. Unsurprisingly, various invertebrates, vertebrates, and even fungi produce IDO. In mammals, IDO1 also serves as a homeostatic regulator, modulating immune response to infection via local tryptophan deprivation, active catabolite production, and non-enzymatic cell signaling.
View Article and Find Full Text PDFSertoli cells (SC) are immune privileged cells with the capacity of modulating the immune response by expressing several immune-regulatory factors. SC have the capacity to respond to external stimuli through innate phagocytic and antibacterial activities. This evidence evoked a potential role of SC as drug carriers and therapeutic agents.
View Article and Find Full Text PDFSmoke components, such as nicotine and its major metabolites, cross the blood-testis barrier and are detectable in the seminal plasma of both active smokers and individuals exposed to cigarette smoke. In vivo studies in a rat model have further demonstrated that nicotine exposure reduces the weight of the testis, as well as the number of spermatocytes and spermatids, and affects the ultrastructure of Sertoli cells (SC) - which serve as sentinels of spermatogenesis - causing intense germ cell sloughing in the tubular lumen that compromises offspring fertility. This study sought to determine the effects of nicotine on the viability and function of purified pig pre-pubertal SC.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
February 2020
DNA methylation and histone acetylation, the most studied epigenetic changes, drive and maintain cancer phenotypes. DNA methyltransferase (DNMT) dysregulation promoted localized hypermethylation in CpG rich regions while upregulated histone deacetylases (HDAC) deacetylated histone tails. Both changes led to close chromatin conformation, suppressing transcription and silencing tumor suppressor genes.
View Article and Find Full Text PDF(Moraceae) is a tree that grows in north Vietnam whose leaf decoction is used as a traditional remedy by the Hmong ethnic group to treat arthritis and backache. Our study evaluated the decoction's efficacy and mechanism of action in DBA/1J mice with collagen-induced arthritis (CIA). Mice treated with the decoction (At) either from the first collagen immunization or after CIA development experienced significantly less joint edema and inflammatory infiltration, whereas CIA-induced cartilage damage could only be prevented by early At treatment.
View Article and Find Full Text PDFBecause Sertoli cells (SCs) play a central role in germ cell survival, their death may result in marked germ cell loss and infertility. SCs are the only somatic cells within the seminiferous tubules and are essential for regulating spermatogenesis. Factors that enhance or diminish the viability of SCs may have profound effects on spermatogenesis.
View Article and Find Full Text PDFStem cells have high potential for cell therapy in regenerative medicine. We previously isolated stem cell types from human amniotic fluid, derived from prenatal amniocentesis. One type, characterized by a fast doubling time, was designated as fast human amniotic stem cells (fHASCs).
View Article and Find Full Text PDFSpermatogenesis is a highly complicated biological process that occurs in the epithelium of the seminiferous tubules. It is regulated by a complex network of endocrine and paracrine factors and by juxtacrine testicular cross-talk. Sertoli cells (SC) play a key role in spermatogenesis due to their production of trophic, differentiation and immune-modulating factors, but many of the molecular pathways of SC action remain controversial and unclear.
View Article and Find Full Text PDFEnvironmental pollution is one of the main factors responsible for reducing fertility in males. Lead is one of the major heavy metal contaminants that impairs several organs; it preferentially accumulates in male reproductive organs and alters sperm quality both in vivo and in vitro. However, the underlying mechanisms remain unclear.
View Article and Find Full Text PDFAt present, there is no reliable in vitro assembled prepubertal testis-like biomimetic organ culture system designed to assess the functional effects of human gonadotropins on Sertoli and Leydig cells. Spermatogenesis is regulated by endocrine, paracrine, and juxtacrine factors (testicular cross-talk), mainly orchestrated by gonadotropins such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) that play a pivotal role by stimulating Leydig and Sertoli cells, respectively. The aim of our study was to set up an in vitro prepubertal porcine bioengineered construct as a new model for experimental studies on reassembled Sertoli and Leydig cells.
View Article and Find Full Text PDFBackground: Increased abdominal fat and chronic inflammation in the expanded adipose tissue of obesity contribute to the development of insulin resistance and type 2 diabetes mellitus (T2D). The emerging immunoregulatory and anti-inflammatory properties of Sertoli cells have prompted their application to experimental models of autoimmune/inflammatory disorders, including diabetes. The main goal of this work was to verify whether transplantation of microencapsulated prepubertal porcine Sertoli cells (MC-SC) in the subcutaneous abdominal fat depot of spontaneously diabetic and obese db/db mice (homozygous for the diabetes spontaneous mutation [Lepr ]) would: (i) improve glucose homeostasis and (ii) modulate local and systemic immune response and adipokines profiles.
View Article and Find Full Text PDFIntroduction: Immune dysfunction, promoted by pro-inflammatory cytokines, plays a pivotal role in neurodegeneration associated with Huntington's disease.
Aims: The aim of this study was to investigate the emerging immunoregulatory and antiinflammatory properties of Sertoli cells in Huntington's disease.
Methods: The experimental R6/2 mouse model of Huntington's disease was treated by a single intraperitoneal injection of microencapsulated prepubertal porcine Sertoli cells and lifespan, motor performance and striatal inflammatory pattern have been evaluated.
We report data about the effects of intraperitoneal (i.p.) injection of specific pathogen-free (SPF) porcine Sertoli cells (SeC) encapsulated into clinical grade alginate-based microcapsules (SeC-MC) on muscles of chronic and presymptomatic dystrophic, mdx mice.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration leading to impaired locomotion, respiratory failure and premature death. In DMD patients, inflammatory events secondary to dystrophin mutation play a major role in the progression of the pathology. Sertoli cells (SeC) have been largely used to protect xenogeneic engraftments or induce trophic effects thanks to their ability to secrete trophic, antiinflammatory, and immunomodulatory factors.
View Article and Find Full Text PDFMetabotropic glutamate receptor 4 (mGluR4) possesses immune modulatory properties in vivo, such that a positive allosteric modulator (PAM) of the receptor confers protection on mice with relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). ADX88178 is a newly-developed, one such mGluR4 modulator with high selectivity, potency, and optimized pharmacokinetics. Here we found that application of ADX88178 in the RR-EAE model system converted disease into a form of mild-yet chronic-neuroinflammation that remained stable for over two months after discontinuing drug treatment.
View Article and Find Full Text PDFAlginate represents one of the most appealing biopolymers for pharmaceutical and biomedical applications. Alginate as a biomaterial for clinical use has been established, although not free from issues. Here we provide a critical review on some of the main recent advances in alginate research in drug delivery and its prominent role in cell microencapsulation for the treatment of diseases, such as type 1 diabetes mellitus.
View Article and Find Full Text PDFBackground: Porcine Sertoli cells (pSCs) have been employed for cell therapy in pre-clinical studies for several chronic/immune diseases as they deliver molecules associated with trophic and anti-inflammatory effects. To be employed for human xenografts, pSCs products need to comply with safety and stability. To fulfill such requirements, we employed a microencapsulation technology to increase pre-transplant storage stability of specific pathogen-free pSCs (SPF-pSCs) and evaluated the in vivo long-term viability and safety of grafts.
View Article and Find Full Text PDF