Background And Aims: Both plants and animals display considerable variation in their phe- notypic traits as they grow. This variation helps organisms to adapt to specific challenges at different stages of development. Masting, the variable and synchronized seed production across years by a population of plants, is a common reproductive strategy in perennial plants that can enhance reproductive efficiency through increasing pollination efficiency and decreasing seed predation.
View Article and Find Full Text PDFMany perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure.
View Article and Find Full Text PDFClimate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e.
View Article and Find Full Text PDFInterannual variability of seed production, known as masting, has far-reaching ecological impacts including effects on forest regeneration and the population dynamics of seed consumers. Because the relative timing of management and conservation efforts in ecosystems dominated by masting species often determines their success, there is a need to study masting mechanisms and develop forecasting tools for seed production. Here, we aim to establish seed production forecasting as a new branch of the discipline.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2021
The timing of seed production and release is highly relevant for successful plant reproduction. Ecological disturbances, if synchronized with reproductive effort, can increase the chances of seeds and seedlings to germinate and establish. This can be especially true under variable and synchronous seed production (masting).
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2021
Masting, the intermittent and synchronous production of large seed crops, can have profound consequences for plant populations and the food webs that are built on their seeds. For centuries, people have recorded mast crops because of their importance in managing wildlife populations. In the past 30 years, we have begun to recognize the importance of masting in conserving and managing many other aspects of the environment: promoting the regeneration of forests following fire or other disturbance, conserving rare plants, conscientiously developing the use of edible seeds as non-timber forest products, coping with the consequences of extinctions on seed dispersal, reducing the impacts of plant invasions with biological control, suppressing zoonotic diseases and preventing depredation of endemic fauna.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2021
In disturbance-prone ecosystems, fitness consequences of plant reproductive strategies are often determined by the relative timing of seed production and disturbance events, but the role of disturbances as proximate drivers of seed production has been overlooked. We use long-term data on seed production in , and , rhizomatous oaks found in south central Florida's oak scrub, to investigate the role of fire history and its interaction with weather in shaping acorn production and its synchrony Acorn production increased with the time since last fire, combined with additive or interactive effects of spring precipitation (+) or drought (-). Furthermore, multiple matrix regression models revealed that ramet pairs with shared fire history were more synchronous in seed production than ones that burned in different years.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2021
Populations of many long-lived plants exhibit spatially synchronized seed production that varies extensively over time, so that seed production in some years is much higher than on average, while in others, it is much lower or absent. This phenomenon termed or has important consequences for plant reproductive success, ecosystem dynamics and plant-human interactions. Inspired by recent advances in the field, this special issue presents a series of articles that advance the current understanding of the ecology and evolution of masting.
View Article and Find Full Text PDFMasting-temporally variable seed production with high spatial synchrony-is a pervasive strategy in wind-pollinated trees that is hypothesized to be vulnerable to climate change due to its correlation with variability in abiotic conditions. Recent work suggests that aging may also have strong effects on seed production patterns of trees, but this potential confounding factor has not been considered in previous times series analysis of climate change effects. Using a 54 year dataset for seven dominant species in 17 forests across Poland, we used the proportion of seed-producing trees (PST) to contrast the predictions of the climate change and aging hypotheses in Abies alba, Fagus sylvatica, Larix decidua, Picea abies, Pinus sylvestris, Quercus petraea, and Quercus robur.
View Article and Find Full Text PDFPremise Of The Study: The influence of weather conditions on masting and the ecological advantages of this reproductive behavior have been the subject of much interest. Weather conditions act as cues influencing reproduction of individual plants, and similar responses expressed across many individuals lead to population-level synchrony in reproductive output. In turn, synchrony leads to benefits from economies of scale such as enhanced pollination success and seed predator satiation.
View Article and Find Full Text PDFTo reduce the vulnerability of their small body size, common marmosets live in large and cohesive social groups. Thus, we hypothesized that in order to compensate for small body size and predation risk, individuals of common marmosets will stay gathered rather than scattered when foraging for eggs and/or nestling birds. Furthermore, in order to avoid costly injuries and eventual predation risks, for both sides, the majority of interactions among common marmosets and small birds will not involve direct physical contact.
View Article and Find Full Text PDFMistletoes are a widespread group of plants often considered to be hemiparasitic, having detrimental effects on growth and survival of their hosts. We studied the effects of the Pacific mistletoe, , a member of a largely autotrophic genus, on three species of deciduous California oaks. We found no effects of mistletoe presence on radial growth or survivorship and detected a significant positive relationship between mistletoe and acorn production.
View Article and Find Full Text PDFScatter hoarding by corvids (crows, jays, magpies, and nutcrackers) provides seed dispersal for many large-seeded plants, including oaks and pines. When hoarding seeds, corvids often choose nonrandom locations throughout the landscape, resulting in differential survival of seeds. In the context of habitat restoration, such disproportional storing of seeds in areas suitable for germination and establishment can accelerate expansion and recovery of large-seeded tree populations and their associated ecosystems.
View Article and Find Full Text PDFWe investigated spatial synchrony of acorn production by valley oaks (Quercus lobata) among individual trees at the within-population, local level and at the among-population, statewide level spanning the geographic range of the species. At the local level, the main drivers of spatial synchrony were water availability and flowering phenology of individual trees, while proximity, temperature differences between trees, and genetic similarity failed to explain a significant proportion of variance in spatial synchrony. At the statewide level, annual rainfall was the primary driver, while proximity was significant by itself but not when controlling for rainfall; genetic similarity was again not significant.
View Article and Find Full Text PDFMasting, the highly variable production of synchronized large seed crops, is a common reproductive strategy in plant populations. In wind-pollinated trees, flowering and pollination dynamics are hypothesized to provide the mechanistic link for the well-known relationship between weather and population-level seed production. Several hypotheses make predictions about the effect of weather on annual pollination success.
View Article and Find Full Text PDFThe terminal investment hypothesis-which proposes that reproductive investment should increase with age-related declines in reproductive value-has garnered support in a range of animal species but has not been previously examined in long-lived plants, such as trees. We tested this hypothesis by comparing relative acorn production and radial growth among 1,000+ mature individuals of eight species of California oaks (genus Quercus) followed for up to 37 years, during which time 70 trees died apparently natural deaths. We found no significant differences in the radial growth, acorn production, or index of reproductive effort, taking into consideration both growth and reproduction among dying trees relative to either conspecific trees at the same site that did not die or growth and reproduction from earlier years for the focal trees that did eventually die.
View Article and Find Full Text PDFAlthough the functional basis of variable and synchronous seed production (masting behavior) has been extensively investigated, only recently has attention been focused on the proximate mechanisms driving this phenomenon. We analyzed the relationship between weather and acorn production in 15 species of oaks (genus Quercus) from three geographic regions on two continents, with the goals of determining the extent to which similar sets of weather factors affect masting behavior across species and to explore the ecological basis for the similarities detected. Lag-1 temporal autocorrelations were predominantly negative, supporting the hypothesis that stored resources play a role in masting behavior across this genus, and we were able to determine environmental variables correlating with acorn production in all but one of the species.
View Article and Find Full Text PDFCorvids (crows, jays, magpies and nutcrackers) are important dispersers of large-seeded plants. Studies on captive or supplemented birds suggest that they flexibly adjust their scatter-hoarding behaviour to the context of social dynamics and relative seed availability. Because many corvid-dispersed trees show high annual variation in seed production, context-dependent foraging can have strong effects on natural corvid scatter-hoarding behaviour.
View Article and Find Full Text PDFSpatial and temporal variation in resource distribution affect the movement and foraging behavior of many animals. In the case of animal-dispersed trees, numerous studies have addressed masting-the synchronized variation in seed production between years-but the fitness consequences of spatial variation in seed production within a year are unclear. We investigated the effects of variable acorn production in a population of valley oaks (Quercus lobata) on the composition and behavior of the avian-disperser community.
View Article and Find Full Text PDFPollen limitation is a key assumption of theories that explain mast seeding, which is common among wind-pollinated and woody plants. In particular, the pollen coupling hypothesis and pollination Moran effect hypothesis assume pollen limitation as a factor that synchronizes seed crops across individuals. The existence of pollen limitation has not, however, been unambiguously demonstrated in wind-pollinated, masting trees.
View Article and Find Full Text PDFBackground: Social conformity is a cornerstone of human culture because it accelerates and maintains the spread of behaviour within a group. Few empirical studies have investigated the role of social conformity in the maintenance of traditions despite an increasing body of literature on the formation of behavioural patterns in non-human animals. The current report presents a field experiment with free-ranging marmosets (Callithrix jacchus) which investigated whether social conformity is necessary for the maintenance of behavioural patterns within groups or whether individual effects such as habit formation would suffice.
View Article and Find Full Text PDF