Publications by authors named "Mario Arias-Garcia"

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited.

View Article and Find Full Text PDF

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts.

View Article and Find Full Text PDF

Amantadine and clozapine have proved to reduce abnormal involuntary movements (AIMs) in preclinical and clinical studies of L-DOPA-Induced Dyskinesias (LID). Even though both drugs decrease AIMs, they may have different action mechanisms by using different receptors and signaling profiles. Here we asked whether there are differences in how they modulate neuronal activity of multiple striatal neurons within the striatal microcircuit at histological level during the dose-peak of L-DOPA in ex-vivo brain slices obtained from dyskinetic mice.

View Article and Find Full Text PDF

Fine motor skills are essential in everyday life and can be compromised in several nervous system disorders. The acquisition and performance of these tasks require sensory-motor integration and involve precise control of bilateral brain circuits. Implementing unimanual behavioral paradigms in animal models will improve the understanding of the contribution of brain structures, like the striatum, to complex motor behavior as it allows manipulation and recording of neural activity of specific nuclei in control conditions and disease during the performance of the task.

View Article and Find Full Text PDF

Differences in the intrinsic properties of intralaminar thalamo-striatal neurons such as expressing low-threshold-spikes (LTS) or after hyperpolarizing potentials (AHPs) of different duration have been attributed to different maturation stages. However, two morphological types: "diffuse" and "bushy" have been described. Therefore, we explored whether electrophysiological differences persist in adult mice using whole cell recordings.

View Article and Find Full Text PDF

Fragile X mental retardation 1 (FMR1) encodes the RNA binding protein FMRP. Loss of FMRP drives Fragile X syndrome (FXS), the leading inherited cause of intellectual disability and a leading monogenic cause of autism. While cortical hyperexcitability is a hallmark of FXS, the reported phenotypes and underlying mechanisms, including alterations in synaptic transmission and ion channel properties, are heterogeneous and at times contradictory.

View Article and Find Full Text PDF

Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple new enhancers to target functionally distinct neuronal subtypes.

View Article and Find Full Text PDF
Article Synopsis
  • The thalamic reticular nucleus (TRN) is crucial for sensory processing, attention, and cognition, with dysfunction linked to various neurodevelopmental disorders.
  • Researchers studied the TRN in mice, uncovering two distinct neuron subpopulations characterized by different gene-expression profiles and electrophysiological properties.
  • The study also showed how these TRN subpopulations connect with thalamic nuclei and play different roles in regulating sleep, offering new insights into the organization of thalamocortical circuits.
View Article and Find Full Text PDF
Article Synopsis
  • CACNA1I is a gene associated with schizophrenia that affects the function of the Ca3.3 calcium channel, and a specific mutation (R1346H) was found to impair its function in previous research.
  • Researchers created mouse models with the R1346H mutation and ones lacking Ca3.3 to study changes in brain cell activity, particularly in the thalamic reticular nucleus (TRN), where this channel is prevalent.
  • The study revealed that the R1346H mutation led to significant disruptions in sleep spindle patterns during NREM sleep, suggesting this mutation can serve as a model for understanding sleep anomalies in schizophrenia and evaluating potential treatments.
View Article and Find Full Text PDF

The striatum is the largest entrance to the basal ganglia. Diverse neuron classes make up striatal microcircuit activity, consisting in the sequential activation of neuronal ensembles. How different neuron classes participate in generating ensemble sequences is unknown.

View Article and Find Full Text PDF

The ionic driving force for the chloride-permeable GABAA receptor is subject to spatial control and distribution of chloride transporters. NKCC1 and KCC2 are mostly expressed in neurons in a specific manner. In the striatum, the localization of these transporters in identified neurons is unknown.

View Article and Find Full Text PDF

Different corticostriatal suprathreshold responses in direct and indirect striatal projection neurons (SPNs) of rodents have been reported. Responses consist in prolonged synaptic potentials of polysynaptic and intrinsic origin, in which voltage-gated Ca ⁺ currents play a role. Recording simultaneous Ca ⁺ imaging and voltage responses at the soma, while activating the corticostriatal pathway, we show that encoding of synaptic responses into trains of action potentials (APs) is different in SPNs: firing of APs in D1-SPNs increase gradually, in parallel with Ca ⁺ entry, as a function of stimulus intensity.

View Article and Find Full Text PDF

Unlabelled: Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood.

View Article and Find Full Text PDF

Models of basal ganglia (BG) function posit a dynamic balance between two classes of striatal projection neurons (SPNs): direct pathway neurons (dSPNs) that facilitate movements, and indirect pathway neurons (iSPNs) that repress movement execution. Two main modulatory transmitters regulate the output of these neurons: dopamine (DA) and acetylcholine (ACh). dSPNs express D1-type DA, M1-and M4-type ACh receptors, while iSPNs express D2-type DA and M1-type ACh receptors.

View Article and Find Full Text PDF

The firing of striatal projection neurons (SPNs) exhibits afterhyperpolarizing potentials (AHPs) that determine discharge frequency. They are in part generated by Ca(2+)-activated K(+)-currents involving BK and SK components. It has previously been shown that suprathreshold corticostriatal responses are more prolonged and evoke more action potentials in direct pathway SPNs (dSPNs) than in indirect pathway SPNs (iSPNs).

View Article and Find Full Text PDF

Background: Previous work showed differences in the polysynaptic activation of GABAergic synapses during corticostriatal suprathreshold responses in direct and indirect striatal projection neurons (dSPNs and iSPNs). Here, we now show differences and similarities in the polysynaptic activation of cortical glutamatergic synapses on the same responses. Corticostriatal contacts have been extensively studied.

View Article and Find Full Text PDF