Objectives: Neural stem/progenitor cells derived from olfactory neuroepithelium (hereafter olfactory neural stem/progenitor cells, ONSPCs) are emerging as a potential tool in the exploration of psychiatric disorders. The present study intended to assess whether ONSPCs could help discern individuals with schizophrenia (SZ) from non-schizophrenic (NS) subjects by exploring specific cellular and molecular features.
Methods: ONSPCs were collected from 19 in-patients diagnosed with SZ and 31 NS individuals and propagated in basal medium.
The research work aimed to develop a robust sustained release biocompatible brinzolamide (BRZ)-loaded ocular inserts (MeltSerts) using hot-melt extrusion technology with enhanced solubility for glaucoma management. A 3 rotatable central composite design was employed for the optimization of the MeltSerts to achieve sustained release. The effect of two independent factors was examined: Metolose® SR 90SH-100000SR (HPMC, hydroxypropyl methyl cellulose) and Kolliphor® P 407 (Poloxamer 407, P407).
View Article and Find Full Text PDFHereditary spherocytosis (HS) is the most common, nonimmune, hereditary, chronic hemolytic anemia after hemoglobinopathies. The genetic defects in membrane function causing HS lead to perturbation of the RBC metabolome, with altered glycolysis. In mice genetically lacking protein 4.
View Article and Find Full Text PDFMalignant cells in chronic lymphocytic leukemia (CLL) are characterized by oxidative stress that is related to abundant generation of reactive oxygen species (ROS) by increased mitochondrial oxidative phosphorylation (OXPHOS). Lymphoid tissues have been shown to provide a protective microenvironment that antagonizes the effects of ROS, contributing to establishing redox homeostasis that supports the vitality of CLL cells. In the last few decades, a complex antioxidant machinery has been demonstrated to be activated in CLL cells, including the different superoxide dismutase (SOD) isoforms, the thioredoxin (Trx) system, and the enzyme cascade inducing glutathione (GSH) biosynthesis and recycling, to name a few.
View Article and Find Full Text PDFBicarbonate uptake is one of the early steps of capacitation, but the identification of proteins regulating anion fluxes remains elusive. The aim of this study is to investigate the role of sperm solute carrier 4 (SLC4) A1 (spAE1) in the capacitation process. The expression, location, and tyrosine-phosphorylation (Tyr-P) level of spAE1 were assessed.
View Article and Find Full Text PDFThe dynamic coordination between kinases and phosphatases is crucial for cell homeostasis, in response to different stresses. The functional connection between oxidation and the intracellular signaling machinery still remains to be investigated. In the last decade, several studies have highlighted the role of reactive oxygen species (ROS) as modulators directly targeting kinases, phosphatases, and downstream modulators, or indirectly acting on cysteine residues on kinases/phosphatases resulting in protein conformational changes with modulation of intracellular signaling pathway(s).
View Article and Find Full Text PDFOsteopontin (OPN) is a phosphoglycoprotein secreted into the extracellular matrix upon liver injury, acting as a cytokine stimulates the deposition of fibrillary collagen in liver fibrogenesis. In livers of mice subjected to bile duct ligation (BDL) and in cultured activated hepatic stellate cells (HSCs), we show that OPN, besides being overexpressed, is substantially phosphorylated by family with sequence similarity 20, member C (Fam20C), formerly known as Golgi casein kinase (G-CK), which is exclusively resident in the Golgi apparatus. In both experimental models, Fam20C becomes overactive when associated with a 500-kDa multiprotein complex, as compared with the negligible activity in livers of sham-operated rats and in quiescent HSCs.
View Article and Find Full Text PDFBackground: Few studies have investigated alterations of olfactory neuroepithelium (ONE) as a biomarker of schizophrenia, and none its association with cognitive functioning.
Method: Fresh ONE cells from twelve patients with schizophrenia and thirteen healthy controls were collected by nasal brushing, cultured in proper media and passed twelve times. Markers of cell proliferation (BrdU incorporation, Cyclin-D1 and p21 protein level) were quantified.
Lyn, a member of the Src family of kinases, is a key factor in the dysregulation of survival and apoptotic pathways of malignant B cells in chronic lymphocytic leukemia. One of the effects of Lyn's action is spatial and functional segregation of the tyrosine phosphatase SHP-1 into two pools, one beneath the plasma membrane in an active state promoting pro-survival signals, the other in the cytosol in an inhibited conformation and unable to counter the elevated level of cytosolic tyrosine phosphorylation. We herein show that SHP-1 activity can be elicited directly by nintedanib, an agent also known as a triple angiokinase inhibitor, circumventing the phospho-S591-dependent inhibition of the phosphatase, leading to the dephosphorylation of pro-apoptotic players such as procaspase-8 and serine/threonine phosphatase 2A, eventually triggering apoptosis.
View Article and Find Full Text PDFNorbormide [5-(α-hydroxy-α-2-pyridylbenzyl)-7-(α-2-pyridylbenzylidene)-5-norbornene-2,3-dicarboximide] (NRB), an existing but infrequently used rodenticide, is known to be uniquely toxic to rats but relatively harmless to other rodents and mammals. However, as an acute vasoactive, NRB has a rapid onset of action which makes it relatively unpalatable to rats, often leading to sublethal uptake and accompanying bait shyness. A series of NRB-derived pro-toxicants (3a - i, 4a - i, and 5a - i) were prepared in an effort to 'mask' this acute response and improve both palatability and efficacy.
View Article and Find Full Text PDFBackground: Phosphodiesterase 5 inhibitors (PDE5-Is) sildenafil, vardenafil, tadalafil and the recently approved avanafil represent the first-line choice for both on-demand and chronic treatment of erectile dysfunction (ED). In addition to this, sildenafil and tadalafil, have also been approved for the treatment of pulmonary arterial hypertension. Due to its expression and localization in many tissues, PDE5 and its regulation has been reported to be involved in several other diseases.
View Article and Find Full Text PDFNatural (iso)flavonoids have been recently reported to inhibit cyclic nucleotide phosphodiesterases (PDEs) and induce vasorelaxation, albeit the results described in the literature are discordant. The cGMP-selective isoform PDE-5A, in particular, represents the target of sildenafil and its analogues in the treatment of erectile dysfunction (ED) and pulmonary hypertension by promoting relaxation in vascular smooth muscle through the activation of the NO/cGMP pathway. We undertook this study to verify if osajin and pomiferin, two natural prenylated isoflavones and major constituents of Maclura pomifera extracts previously investigated for their anticancer, antibacterial and antidiabetic properties, show inhibitory activity on PDE-5A.
View Article and Find Full Text PDFAberrant protein kinase activities, and the consequent dramatic increase of Ser/Thr and -Tyr phosphorylation, promote the deregulation of the survival pathways in chronic lymphocytic leukemia (CLL), which is crucial to the pathogenesis and progression of the disease. In this study, we show that the tumor suppressor protein phosphatase 2A (PP2A), one of the major Ser/Thr phosphatases, is in an inhibited form because of the synergistic contribution of 2 events, the interaction with its physiologic inhibitor SET and the phosphorylation of Y307 of the catalytic subunit of PP2A. The latter event is mediated by Lyn, a Src family kinase previously found to be overexpressed, delocalized, and constitutively active in CLL cells.
View Article and Find Full Text PDFLyn, a member of the group of tyrosine kinases named the Src family kinases (SFKs), is overexpressed, associated with an aberrant multiprotein complex and constitutively active in B-cell chronic lymphocytic leukemia (B-CLL) cells, resulting in a high level of tyrosine phosphorylation and contributing to their resistance to apoptosis. By using biochemical and bioinformatics tools, we identified procaspase-8 (procasp8), the caspase-8 zymogen, as a cytosolic target for Lyn in B-CLL cells, the phosphorylation of which at Tyr380 promotes the formation of an inactive procasp8 homodimer. This complex remains segregated in the cytosol and appears to be crucial in mediating the antiapoptotic function of Lyn in this disease.
View Article and Find Full Text PDFTo complete their life cycle and spread, viruses interfere with and gain control of diverse cellular processes, this most often occurring through interaction between viral proteins (VPs) and resident protein partners. Among the latter, Src family kinases (SFKs), a class of non-receptor tyrosine kinases that contributes to the conversion of extracellular signals into intracellular signaling cascades and is involved in virtually all cellular processes, have recently emerged as critical mediators between the cell's infrastructure and the viral demands. In this scenario, structural or ex novo synthesized VPs are able to bind to the different domains of these enzymes through specific short linear motifs present along their sequences.
View Article and Find Full Text PDFThe dimerization and auto-transphosphorylation of platelet-derived growth factor receptor (PDGFR) upon engagement by platelet-derived growth factor (PDGF) activates signals promoting the mitogenic response of hepatic stellate cells (HSCs) due to liver injury, thus contributing to the development of hepatic fibrosis. We demonstrate that the tyrosine phosphatases Src homology 2 domain-containing phosphatase 1 and 2 (SHP-1 and SHP-2) act as crucial regulators of a complex signaling network orchestrated by PDGFR activation in a spatio-temporal manner with diverse and opposing functions in HSCs. In fact, silencing of either phosphatase shows that SHP-2 is committed to PDGFR-mediated cell proliferation, whereas SHP-1 dephosphorylates PDGFR hence abrogating the downstream signaling pathways that result in HSC activation.
View Article and Find Full Text PDFLiver regeneration (LR) is a compensatory growth that occurs in response to resection or injury of the liver aimed at restoring the liver mass and maintaining body homeostasis. The activation of intracellular signaling pathways due to extracellular stimuli mainly reflects a highly coordinated spatial and temporal organization of phosphotyrosine-based signals generated by the concerted action of three basic functional modules, namely protein tyrosine kinases, protein tyrosine phosphatases, and the Src homology 2 (SH2) domain. In this review, we have selected a set of signaling proteins downstream of activated cytokine and growth factor receptors that highlight the multifaceted aspects of tyrosine phosphorylation with their impact on the course of LR.
View Article and Find Full Text PDFThe association of the SH3 (Src homology 3) domain of SFKs (Src family kinases) with protein partners bearing proline-rich motifs has been implicated in the regulation of SFK activity, and has been described as a possible mechanism of relocalization of SFKs to subcellular compartments. We demonstrate in the present study for the first time that p13, an accessory protein encoded by the HTLV-1 (human T-cell leukaemia virus type 1), binds the SH3 domain of SFKs via its C-terminal proline-rich motif, forming a stable heterodimer that translocates to mitochondria by virtue of its N-terminal mitochondrial localization signal. As a result, the activity of SFKs is dramatically enhanced, with a subsequent increase in mitochondrial tyrosine phosphorylation, and the recognized ability of p13 to insert itself into the inner mitochondrial membrane and to perturb the mitochondrial membrane potential is abolished.
View Article and Find Full Text PDFHepatic stellate cells (HSC) are the major producers of collagen in the liver and their conversion from resting cells to a proliferating, contractile and fibrogenic phenotype ('activation') is a critical step, leading to liver fibrosis characterized by deposition of excessive extracellular matrix. Cytokines, growth factors, reactive oxygen and nitrogen species (ROS/RNS), lipid peroxides and their products deriving from hepatocytes, Kupffer cells and other cells converge on HSC and influence their activation. This review focuses on glutathione and thioredoxin pathways, with particular emphasis on their role in HSC.
View Article and Find Full Text PDFPlatelet-derived growth factor (PDGF) has been shown to be essential in the activation of hepatic stellate cells (HSCs), contributing to the onset and development of hepatic fibrosis. Recently, sphingosine-1-phosphate (S1P) has been shown to be a mitogen and stimulator of chemotaxis also for HSCs. Since it has been demonstrated in several cell types that cross-talk between PDGF and S1P signalling pathways occurs, our aim was to investigate the potential antifibrotic effect of FTY720, whose phosphorylated form acts as a potent S1P receptor (S1PR) modulator, on HSCs.
View Article and Find Full Text PDF