Publications by authors named "Mario Alcocer-Avila"

Background: Targeted radiotherapies with low-energy ions show interesting possibilities for the selective irradiation of tumor cells, a strategy particularly appropriate for the treatment of disseminated cancer. Two promising examples are boron neutron capture therapy (BNCT) and targeted radionuclide therapy with -particle emitters (TAT). The successful clinical translation of these radiotherapies requires the implementation of accurate radiation dosimetry approaches able to take into account the impact on treatments of the biological effectiveness of ions and the heterogeneity in the therapeutic agent distribution inside the tumor cells.

View Article and Find Full Text PDF

Early use of targeted radionuclide therapy (TRT) to eradicate disseminated tumor cells (DTCs) might offer cure. Selection of appropriate radionuclides is required. This work highlights the potential of Pd (T = 16.

View Article and Find Full Text PDF

Background: Monte Carlo simulations have been considered for a long time the gold standard for dose calculations in conventional radiotherapy and are currently being applied for the same purpose in innovative radiotherapy techniques such as targeted radionuclide therapy (TRT).

Purpose: We present in this work a benchmarking study of the latest version of the Transport d'Ions Lourds Dans l'Aqua & Vivo (TILDA-V ) Monte Carlo track structure code, highlighting its capabilities for describing the full slowing down of -particles in water and the energy deposited in cells by -emitters in the context of TRT.

Methods: We performed radiation transport simulations of -particles (10 keV -100 MeV ) in water with TILDA-V and the Particle and Heavy Ion Transport code System (PHITS) version 3.

View Article and Find Full Text PDF

Early use of targeted radionuclide therapy to eradicate tumor cell clusters and micrometastases might offer cure. However, there is a need to select appropriate radionuclides and assess the potential impact of heterogeneous targeting. The Monte Carlo code CELLDOSE was used to assess membrane and nuclear absorbed doses from Lu and Tb (β-emitter with additional conversion and Auger electrons) in a cluster of 19 cells (14-μm diameter, 10-μm nucleus).

View Article and Find Full Text PDF

Purpose: Auger emitters exhibit interesting features due to their emission of a cascade of short-range Auger electrons. Maximum DNA breakage efficacy is achieved when decays occur near DNA. Studies of double-strand breaks (DSBs) yields in plasmids revealed cutoff distances from DNA axis of 10.

View Article and Find Full Text PDF

Background: Targeted radionuclide therapy (TRT) is gaining importance. For TRT to be also used as adjuvant therapy or for treating minimal residual disease, there is a need to increase the radiation dose to small tumours. The aim of this in silico study was to compare the performances of Tb (a medium-energy β emitter with additional Auger and conversion electron emissions) and Lu for irradiating single tumour cells and micrometastases, with various distributions of the radionuclide.

View Article and Find Full Text PDF

Whether it is in radiobiology to identify DNA lesions or in medicine to adapt the radiotherapeutic protocols, a detailed understanding of the radiation-induced interactions in living matter is required. Monte Carlo track-structure codes have been successfully developed to describe these interactions and predict the radiation-induced energy deposits at the nanoscale level in the medium of interest. In this work, the quantum-mechanically based Monte Carlo track-structure code TILDA-V has been used to compute the slowing-down of protons in water and DNA.

View Article and Find Full Text PDF