Publications by authors named "Mario A Ciampini"

We introduce and theoretically analyze a scheme to prepare and detect non-Gaussian quantum states of an optically levitated particle via the interaction with light pulses that generate cubic and inverted potentials. We show that this approach allows to operate on sufficiently short time- and length scales to beat decoherence in a regime accessible in state-of-the-art experiments. Specifically, we predict the observation of single-particle interference of a nanoparticle with a mass above 10 atomic mass units delocalized by several nanometers, on timescales of milliseconds.

View Article and Find Full Text PDF

Arrays of optically trapped nanoparticles have emerged as a platform for the study of complex nonequilibrium phenomena. Analogous to atomic many-body systems, one of the crucial ingredients is the ability to precisely control the interactions between particles. However, the optical interactions studied thus far only provide conservative optical binding forces of limited tunability.

View Article and Find Full Text PDF

In this work, we demonstrate the use of stimulated emission tomography to characterize a hyperentangled state generated by spontaneous parametric downconversion in a cw-pumped source. In particular, we consider the generation of hyperentangled states consisting of photon pairs entangled in polarization and path. These results extend the capability of stimulated emission tomography beyond the polarization degree of freedom and demonstrate the use of this technique to study states in higher dimension Hilbert spaces.

View Article and Find Full Text PDF

A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix.

View Article and Find Full Text PDF

We introduce a novel diagnostic scheme for multipartite networks of entangled particles, aimed at assessing the quality of the gates used for the engineering of their state. Using the information gathered from a set of suitably chosen multiparticle Bell tests, we identify conditions bounding the quality of the entangled bonds among the elements of a register. We illustrate the effectiveness of our proposal by characterizing a quantum resource engineered combining two-photon hyperentanglement and photonic-chip technology.

View Article and Find Full Text PDF

We present an efficient experimental procedure that certifies nonvanishing quantum capacities for qubit noisy channels. Our method is based on the use of a fixed bipartite entangled state, where the system qubit is sent to the channel input. A particular set of local measurements is performed at the channel output and the ancilla qubit mode, obtaining lower bounds to the quantum capacities for any unknown channel with no need of quantum process tomography.

View Article and Find Full Text PDF

Quantum metrology is the state-of-the-art measurement technology. It uses quantum resources to enhance the sensitivity of phase estimation over that achievable by classical physics. While single parameter estimation theory has been widely investigated, much less is known about the simultaneous estimation of multiple phases, which finds key applications in imaging and sensing.

View Article and Find Full Text PDF

Encoding many qubits in different degrees of freedom (DOFs) of single photons is one of the routes toward enlarging the Hilbert space spanned by a photonic quantum state. Hyperentangled photon states (that is, states showing entanglement in multiple DOFs) have demonstrated significant implications for both fundamental physics tests and quantum communication and computation. Increasing the number of qubits of photonic experiments requires miniaturization and integration of the basic elements, and functions to guarantee the setup stability, which motivates the development of technologies allowing the precise control of different photonic DOFs on a chip.

View Article and Find Full Text PDF

We experimentally show how classical correlations can be turned into quantum entanglement, via the presence of dissipation and the action of a CNOT gate. We first implement a simple two-qubit protocol in which entanglement production is not possible in the absence of such kind of noise, while it arises with its introduction, and is proportional to its amount. We then perform a more elaborate four-qubit experiment, by employing two hyperentangled photons initially carrying only classical correlations.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: