Dissimilatory iron reduction (DIR) coupled with carbon cycling is increasingly being recognized as an influential process in freshwater wetland soils and sediments. The role of DIR in organic matter (OM) mineralization, however, is still largely unknown in lake sediment environments. In this study, we clarified rates and pathways of OM mineralization in two shallow lakes with seasonal hydrological connectivity and different eutrophic situations.
View Article and Find Full Text PDFJ Environ Manage
October 2021
Flow discharge and anthropogenic activities influence the composition and configuration of habitat patches in river ecosystems. Understanding the response of habitat landscapes and the corresponding fish habitat quality is crucial for river management. We investigated the reaction of fish habitat suitability and variant flow discharge performance in examining aquatic habitat patch fragmentation.
View Article and Find Full Text PDFWetlands (Wilmington)
March 2021
This paper arose from collaboration and discussions over the past years between the authors about what wetlands should be restored to in landscapes that have been intensively altered due to human activities over many centuries and where reference conditions are lacking. It is not intended as an in-depth review of the thinking about reference conditions, but as an opinion paper, with the goal of stimulating discussions about wetland restoration approaches, particularly in regions around the world with highly altered landscapes where restoration of wetlands has been gaining traction only relatively recently. We first explain why the thinking on reference wetlands is biased towards North America, where large areas exist with wetlands that are relatively unimpacted by anthropogenic activities.
View Article and Find Full Text PDFLittle is known about the influence of conversion of wetlands to farmlands on concentrations and distribution of elements other than those most commonly studied, partly because of the lack of stratification in wetland soils. In this study, in the Sanjiang Plain in northeastern China, we determined the concentrations of 63 elements along soil profiles at three depths: 0-20 cm, 20-40 cm, and below the depth to which farmers would plow, at 40-60 cm, under four land uses: natural wetland, drained wetland, wetland converted to soybean field and subsequently to rice paddy field. Based on our previous work, we expected that changes in organic matter content would be an important factor affecting element concentrations, but that changes in land uses also led to decoupling of the influence of organic matter on elements.
View Article and Find Full Text PDFTerrestrial hermit crabs play a significant role in coastal ecology. For example, as seed dispersers and debris scavengers in coastal forests, they accelerate the decomposition of organic substances. In the Indo-Pacific Ocean, Coenobita rugosus, C.
View Article and Find Full Text PDFWe measured concentrations of multiple elements, including rare earth elements, in waters and sediments of 38 shallow lakes of varying turbidity and macrophyte cover in the Prairie Parkland (PP) and Laurentian Mixed Forest (LMF) provinces of Minnesota. PP shallow lakes had higher element concentrations in waters and sediments compared to LMF sites. Redundancy analysis indicated that a combination of site- and watershed-scale features explained a large proportion of among-lake variability in element concentrations in lake water and sediments.
View Article and Find Full Text PDFWe examined macrophyte-environment relationships in shallow lakes located within the Prairie Parkland and Laurentian Mixed Forest provinces of Minnesota. Environmental variables included land cover within lake watersheds, and within-lake, water and sediment characteristics. CCA indicated that sediment fraction smaller than 63 μm (<63), open water area, turbidity, and percent woodland and agricultural cover in watersheds were significant environmental variables explaining 36.
View Article and Find Full Text PDFCadmium, present locally in naturally high concentrations in the Northern Plains of the United States, is of concern because of its toxicity, carcinogenic properties, and potential for trophic transfer. Reports of natural concentrations in soils are dominated by dryland soils with agricultural land uses, but much less is known about cadmium in wetlands. Four wetland categories - prairie potholes, shallow lakes, riparian wetlands, and river sediments - were sampled comprising more than 300 wetlands across four states, the majority in North Dakota.
View Article and Find Full Text PDFBioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L(-1) for P.
View Article and Find Full Text PDFThe effects of plants (corn, soybean, and sunflower) and fertilizer on mobility of more than 60 elements were assessed in a greenhouse experiment. Unplanted columns with the same soil served as controls. Half the columns received fertilizer and all columns were watered at the same rate.
View Article and Find Full Text PDFRumex crispus was grown under wet and dry conditions in two-chamber columns such that the roots were confined to one chamber by a 21 mum nylon mesh, thus creating a soil-root interface ('rhizoplane'). Element concentrations at 3 mm intervals below the 'rhizoplane' were measured. The hypothesis was that metals accumulate near plant roots more under wetland than dryland conditions.
View Article and Find Full Text PDFSeveral wetland plant species appear to have constitutive metal tolerance. In previous studies, populations from contaminated and non-contaminated sites of the wetland plants Typha latifolia, Phragmites australis, Glyceria fluitans and Eriophorum angustifolium were found to be tolerant to high concentrations of metals. This study screened three other species of wetland plants: Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc.
View Article and Find Full Text PDFStoring metal-rich mine waste (tailings) under submerged and reduced conditions can prevent the release of metals to the water column, but introduction of wetland plants on these sediments may alter the reducing environment through root oxygen diffusion or organic matter accumulation. Fertilization of these wetlands can enhance plant growth, but also may either strengthen reducing conditions via microbial stimulation, or increase the redox potential (Eh) through increased root radial oxygen loss. This long-term study (2.
View Article and Find Full Text PDFA Pb-Zn tailings pond, abandoned for approximately 90 years, has been naturally colonized by Glyceria fluitans and is an excellent example of long-term metal retention in tailings ponds under various water cover and vegetation conditions. Shallow/intermittently flooded areas (dry zone) were unvegetated and low in organic matter (OM) content. Permanently flooded areas were either unvegetated with low OM, contained dead vegetation and high OM, or living plants and high OM.
View Article and Find Full Text PDFDimethylsulphoniopropionate (DMSP) is produced in high concentrations in many marine algae, but in higher plants only in a few salt marsh grasses of the genus Spartina, in sugar canes (Saccharum spp.), and in the Pacific strand plant Wollastonia biflora (L.) DC.
View Article and Find Full Text PDF