The nonstoichiometry of I-III-VI semiconductor nanoparticles, especially the ratio of group I to group III elements, has been utilized to control their physicochemical properties. We report the solution-phase synthesis of nonstoichiometric Ag-In-S and Ag-In-Ga-S nanoparticles and results of the investigation of their photoluminescence (PL) properties in relation to their chemical compositions. While stoichiometric AgInS nanoparticles simply exhibited only a broad PL band originating from defect sites in the particles, a narrow band edge PL peak newly appeared with a decrease in the Ag fraction in the nonstoichiometric Ag-In-S nanoparticles.
View Article and Find Full Text PDFWe study the effect of Zn on the photophysical properties of a family of group I-III-VI nanocrystals (NCs), namely in solid solutions of (AgIn)ZnS (ZAIS). We focus on the comparison of the photoluminescence (PL) properties of ZAIS NCs of comparable sizes and different amounts of Zn. This approach helps us to decouple the effects of size and varying chemical composition of the NCs which both influence the PL properties.
View Article and Find Full Text PDFTernary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width.
View Article and Find Full Text PDF