Here, we describe methods for combining impedance spectroscopy measurements with electrical simulation to reveal transepithelial barrier function and tissue structure of human intestinal epithelium cultured inside an organ-on-chip microfluidic culture device. When performing impedance spectroscopy measurements, electrical simulation enabled normalization of cell layer resistance of epithelium cultured statically in a gut-on-a-chip, which enabled determination of transepithelial electrical resistance (TEER) values that can be compared across device platforms. During culture under dynamic flow, the formation of intestinal villi was accompanied by characteristic changes in impedance spectra both measured experimentally and verified with simulation, and we demonstrate that changes in cell layer capacitance may serve as measures of villi differentiation.
View Article and Find Full Text PDFDisruption of tissue barriers formed by cells is an integral part of the pathophysiology of many diseases. Therefore, a thorough understanding of tissue barrier function is essential when studying the causes and mechanisms of disease as well as when developing novel treatments. methods play an integral role in understanding tissue barrier function, and several techniques have been developed in order to evaluate barrier integrity of cultured cell layers, from microscopy imaging of cell-cell adhesion proteins to measuring ionic currents, to flux of water or transport of molecules across cellular barriers.
View Article and Find Full Text PDFOrgans-on-chips, in vitro models involving the culture of (human) tissues inside microfluidic devices, are rapidly emerging and promise to provide useful research tools for studying human health and disease. To characterize the barrier function of cell layers cultured inside organ-on-chip devices, often transendothelial or transepithelial electrical resistance (TEER) is measured. To this end, electrodes are usually integrated into the chip by micromachining methods to provide more stable measurements than is achieved with manual insertion of electrodes into the inlets of the chip.
View Article and Find Full Text PDFMeasuring transendothelial or transepithelial electrical resistance (TEER) is a widely used method to monitor cellular barrier tightness in organs-on-chips. Unfortunately, integrated electrodes close to the cellular barrier hamper visual inspection of the cells or require specialized cleanroom processes to fabricate see-through electrodes. Out-of-view electrodes inserted into the chip's outlets are influenced by the fluid-filled microchannels with relatively high resistance.
View Article and Find Full Text PDFOrgans-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and the challenges that are still ahead. The BBB is formed by specialized endothelial cells and separates blood from brain tissue.
View Article and Find Full Text PDFTrans-epithelial electrical resistance (TEER) measurements are widely used as real-time, non-destructive, and label-free measurements of epithelial and endothelial barrier function. TEER measurements are ideal for characterizing tissue barrier function in organs-on-chip studies for drug testing and investigation of human disease models; however, published reports using this technique have reported highly conflicting results even with identical cell lines and experimental setups. The differences are even more dramatic when comparing measurements in conventional Transwell systems with those obtained in microfluidic systems.
View Article and Find Full Text PDF