Integrin β3 (ITGB3) is probably related to skeletal metastasis, which is the most frequent complication in breast cancer progression. We aimed to define its role and suitability as target for anti-metastatic therapy. We generated two MDA-MB-231 cell clones with conditional miRNA-mediated ITGB3 knockdown for analyzing the resulting effects in vitro regarding mRNA expression, proliferation and migration, as well the impact on skeletal metastasis in a nude rat model.
View Article and Find Full Text PDFHigh osteopontin (OPN) expression is linked to breast cancer bone metastasis. In this study we modulated osteopontin levels conditionally and investigated any related antineoplastic effects. Therefore, we established cell clones from human breast cancer MDA-MB-231 cells, in which the expression of OPN is regulated by the Tet-Off tet-off system.
View Article and Find Full Text PDFChanges in glycosylation are salient features of cancer cells. Here, we report on the diagnostic and therapeutic properties of IDK1, an antibody against tumour associated, hypoglycosylated bone sialoprotein (hypo-BSP). The affinity of the rat monoclonal antibody IDK1 for hypo-BSP, as determined by microscale thermophoresis, was three orders of magnitude higher than for mature BSP, whereas the mouse monoclonal antibody used had similar affinity for both BSP forms.
View Article and Find Full Text PDFIncreased bone sialoprotein (BSP) serum levels are related to breast cancer skeletal metastasis, but their relevance is unknown. We elucidated novel intracellular BSP functions by a conditional knockdown of BSP. Conditional MDA-MB-231 subclones were equipped with a novel gene expression cassette containing a tet-reg-ulated miRNA providing knockdown of BSP production.
View Article and Find Full Text PDF