The bony labyrinth of the inner ear houses the sensory end-organs responsible for balance (otolithic system in the utricle and saccule, and semicircular canal system) and hearing (cochlea). Study of the bony labyrinth has revealed considerable morphological diversity in the hominin lineage (semicircular canals and cochleae) and aided in reconstructing essential aspects of primate evolution, including positional behavior, audition, and phylogenic affinities. However, evidence of evolutionary change in the hominin otolithic system remains elusive.
View Article and Find Full Text PDFObjectives: Reconstruction of fossil hominin manual behaviors often relies on comparative analyses of extant hominid hands to understand the relationship between hand use and skeletal morphology. In this context, the intermediate phalanges remain understudied. Thus, here we investigate cortical bone morphology of the intermediate phalanges of extant hominids and compare it to the cortical structure of the proximal phalanges, to investigate the relationship between cortical bone structure and inferred loading during manual behaviors.
View Article and Find Full Text PDFThe characterization of the femoral diaphysis in Pleistocene hominins with chronoecogeographical diversity plays a crucial role in evaluating evolutionary shifts in locomotor behavior and body shape. However, Pleistocene hominin fossil remains in East Asia are scarce and are widely dispersed temporally and spatially, impeding our comprehension of the nature and polarity of morphological trends. Here, we present qualitative and quantitative analyses of the cross-sectional properties and structural organization of diaphyses in two Late Pleistocene hominin femora (Liujiang PA91 and PA92) from southern China, comparing them to other Eurasian and African Pleistocene hominins.
View Article and Find Full Text PDFObjectives: Studying rib torsion is crucial for understanding the evolution of the hominid ribcage. Interestingly, there are variables of the rib cross section that could be associated with rib torsion and, consequently, with the morphology of the thorax. The aim of this research is to conduct a comparative study of the shape and mineralized tissues of the rib cross section in different hominids to test for significant differences and, if possible, associate them to different thoracic morphotypes.
View Article and Find Full Text PDFCortical bone and dentine share similarities in their embryological origin, development, and genetic background. Few analyses have combined the study of cortical bone and dentine to quantify their covariation relative to endogenous and exogenous factors. However, knowing how these tissues relate in individuals is of great importance to decipher the factors acting on their evolution, and ultimately to understand the mechanisms responsible for the different patterns of tissue proportions shown in hominins.
View Article and Find Full Text PDFPrimate fingers are typically in direct contact with the environment during both locomotion and manipulation, and aspects of external phalangeal morphology are known to reflect differences in hand use. Since bone is a living tissue that can adapt in response to loading through life, the internal bone architecture of the manual phalanges should also reflect differences in manual behaviours. Here, we use the R package Morphomap to analyse high-resolution microCT scans of hominid proximal phalanges of digits 2-5 to determine whether cortical bone structure reflects variation in manual behaviours between bipedal (Homo), knuckle-walking (Gorilla, Pan) and suspensory (Pongo) taxa.
View Article and Find Full Text PDFThe calcar femorale is an internal bony structure of the proximal femur considered to be functionally related to bipedal locomotion. Among extant primates, the presence of a calcar femorale has been so far documented in extant humans and Pan and, among extinct hominins, in the Late Miocene Orrorin, in a Pliocene Australopithecus, and in a Middle Pleistocene Homo specimen. Using high-resolution microcomputed tomography, we investigated the occurrence and morphology (i.
View Article and Find Full Text PDFObjectives: The advent of micro-computed tomography (μCT) made cancellous bone more accessible than ever before. Nevertheless, the characterization of cancellous bone is made difficult by its inherent complexity and the difficulties in defining homology across datasets. Here we propose novel virtual methodological approaches to overcome those issues and complement existing methods.
View Article and Find Full Text PDFThe lack of bone morphological markers associated with the human control of wild animals has prevented the documentation of incipient animal domestication in archaeology. Here, we assess whether direct environmental changes (i.e.
View Article and Find Full Text PDFObjectives: The Pleistocene taxon Paranthropus robustus was established in 1938 following the discovery at Kromdraai B, South Africa, of the partial cranium TM 1517a and associated mandible TM 1517b. Shortly thereafter, a distal humerus (TM 1517g), a proximal ulna (TM 1517e), and a distal hallucial phalanx (TM 1517k) were collected nearby at the site, and were considered to be associated with the holotype. TM 1517a-b represents an immature individual; however, no analysis of the potentially associated postcranial elements has investigated the presence of any endostructural remnant of recent epiphyseal closure.
View Article and Find Full Text PDFStudies of the australopith (Australopithecus and Paranthropus) proximal femur have increasingly integrated information from the local arrangement of the cortical and cancellous bone to allow functional-biomechanical inferences on the locomotor behavioral patterns. In Australopithecus africanus and Paranthropus robustus, the cancellous bone organization at the center of the femoral head shows principal strut orientation similar to that of fossil and recent humans, which indicates that australopiths were human-like in many aspects of their bipedalism. However, by combining outer morphology with superoinferior asymmetry in cortical bone thickness at the base of neck and mid-neck, it has been suggested that, while adapted for terrestrial bipedality, australopiths displayed a slightly altered gait kinematics compared to Homo.
View Article and Find Full Text PDF