Publications by authors named "Marindia Depra"

Mitochondrial genomes have provided significant insights into the evolution of several insects. A typical mitogenome contains 37 genes, and variations in gene order can indicate evolutionary relationships between species. In this study, we have assembled the first complete mitogenomes of Endecous chape and E.

View Article and Find Full Text PDF

Galileo is a transposon notoriously involved with inversions in Drosophila buzzatii by ectopic recombination. Although widespread in Drosophila, little is known about this transposon in other lineages of Drosophilidae. Here, the abundance of the canonical Galileo and its evolutionary history in Drosophilidae genomes was estimated and reconstructed across genera within its two subfamilies.

View Article and Find Full Text PDF

O-methyltransferases (OMTs) are a group of enzymes involved in several fundamental biological processes in plants, including lignin biosynthesis, pigmentation, and aroma production. Despite the intensive investigation of the role of OMTs in plant secondary metabolism, the evolution and diversification of this gene family in Solanaceae remain poorly understood. Here, we conducted a genome-wide survey of OMT genes in six Solanaceae species, reconstructing gene phylogenetic trees, predicting the potential involvement in biological processes, and investigating the exon/intron structure and chromosomal location.

View Article and Find Full Text PDF

Euryades corethrus is a Troidini butterfly (Papilionidae, Papilioninae), endemic to grasslands in southern Brazil, Uruguay, Argentina and Paraguay. Formerly abundant, nowadays it is in the Red list of endangered species for those areas. During its larval stage, it feeds on Aristolochia spp, commonly found in southern grasslands.

View Article and Find Full Text PDF

Genome size evolution is known to be related with transposable elements, yet such relation in incipient species remains poorly understood. For decades, the subgroup of has been a model for evolutionary studies because of the different evolutionary stages and degrees of reproductive isolation its species present. Our main question here was how speciation influences genome size evolution and the fraction of repetitive elements, with a focus on transposable elements.

View Article and Find Full Text PDF

Mannose/glucose-binding lectin from Canavalia ensiformis seeds (Concanavalin A - ConA) has several biological applications, such as mitogenic and antitumor activity. However, most of the mechanisms involved in the in vivo toxicity of ConA are not well known. In this study, the Drosophila melanogaster model was used to assess the toxicity and genotoxicity of different concentrations of native ConA (4.

View Article and Find Full Text PDF

Karyotypes in the worldwide subfamily Oecanthinae show variations in diploid number, chromosome morphology, and sex-chromosome system. This study described the chromosome set and phylogenetic relationships of four Neotropical species, Oecanthus lineolatus, O. valensis, O.

View Article and Find Full Text PDF

Transposable elements are abundant and dynamic part of the genome, influencing organisms in different ways through their presence or mobilization, or by acting directly on pre- and post-transcriptional regulatory regions. We compared and evaluated the presence, structure, and copy number of three hAT superfamily transposons (hobo, BuT2, and mar) in five strains of Drosophila willistoni species. These D.

View Article and Find Full Text PDF

Anastrepha fraterculus (Wiedemann, 1830) (Diptera: Tephritidae) is a major fruit pest, which is basicaly controlled using insecticides, which represents a risk to beneficial arthropods, human health and food contamination. The sterile insect technique (SIT) is a potential alternative tool for the management of this pest, however, only conflicting data is found regarding the optimal dose to achieve sterility. Thus, this study evaluated the effect of gamma radiation doses (0, 40, 50, 60 and 70 Gy) on male and female reproductive sterility, gonads morphometry, emergence, flight ability, and longevity under nutritional stress of A.

View Article and Find Full Text PDF

Accurate taxonomic identifications and species delimitations are a fundamental problem in biology. The complex taxonomy of Nematoda is primarily based on morphology, which is often dubious. DNA barcoding emerged as a handy tool to identify specimens and assess diversity, but its applications in Nematoda are incipient.

View Article and Find Full Text PDF

Rhinoleucophenga Hendel is an endemic genus of the New World with most species recorded in Brazil. Rhinoleucophenga obesa (Loew) seemed to be the most widespread species, being recorded in the United States of America, Mexico and Brazil. In the Neotropical region, identifications of R.

View Article and Find Full Text PDF

Hypermutable strains of Drosophila simulans have been studied for 20 years. Several mutants were isolated and characterized, some of which had phenotypes associated with alteration in development; for example, showing ectopic legs with eyes being expressed in place of antennae. The causal agent of this hypermutability is a non-autonomous hobo-related sequence (hoboVA).

View Article and Find Full Text PDF

The DNA methyltransferase 2 (DNMT2) protein is the most conserved member of the DNA methyltransferase family. Nevertheless, its substrate specificity is still controversial and elusive. The genomic role and determinants of DNA methylation are poorly understood in invertebrates, and several mechanisms and associations are suggested.

View Article and Find Full Text PDF

Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) is a widely distributed pest of soft-skinned and stone fruits that is controlled mainly with pesticides. An alternative to the chemical control is the sterile insect technique (SIT), an ecologically friendly method of pest management that could be used against D. suzukii.

View Article and Find Full Text PDF

The willistoni species subgroup has been the subject of several studies since the latter half of the past century and is considered a Neotropical model for evolutionary studies, given the many levels of reproductive isolation and different evolutionary stages occurring within them. Here we present for the first time a phylogenetic reconstruction combining morphological characters and molecular data obtained from 8 gene fragments (COI, COII, Cytb, Adh, Ddc, Hb, kl-3 and per). Some relationships were incongruent when comparing morphological and molecular data.

View Article and Find Full Text PDF

Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive.

View Article and Find Full Text PDF

The hAT superfamily comprises a large and diverse array of DNA transposons found in all supergroups of eukaryotes. Here we characterized the Drosophila buzzatii BuT2 element and found that it harbors a five-exon gene encoding a 643-aa putatively functional transposase. A phylogeny built with 85 hAT transposases yielded, in addition to the two major groups already described, Ac and Buster, a third one comprising 20 sequences that includes BuT2, Tip100, hAT-4_BM, and RP-hAT1.

View Article and Find Full Text PDF

Infections by the endosymbiotic bacterium Wolbachia developed a rapid global expansion within Old World Drosophila species, ultimately infecting also Neotropical species. In this sense, screenings are necessary to characterize new variants of Wolbachia or new hosts, and also in order to map the dynamics of already known infections. In this paper, we performed a double screening approach that combined Dot-blot and PCR techniques in order to reevaluate the infection status by Wolbachia in species from the willistoni subgroup of Drosophila.

View Article and Find Full Text PDF

Background: Miniature inverted-repeat transposable elements (MITEs) are short, nonautonomous DNA elements flanked by subterminal or terminal inverted repeats (TIRs) with no coding capacity. MITEs were originally recognized as important components of plant genomes, where they can attain extremely high copy numbers, and are also found in several animal genomes, including mosquitoes, fish and humans. So far, few MITEs have been described in Drosophila.

View Article and Find Full Text PDF

A PCR screening approach was used to search for sequences homologous to a previously described hAT transposon found in Drosophila simulans and Drosophila sechellia, named here as hosimary. In this study, 52 Drosophilidae species were analyzed and these sequences seem to be restricted to some species of the melanogaster group and Zaprionus indianus. These species present variable number of copies and most of those appear to be putatively encoding.

View Article and Find Full Text PDF

Transposable elements comprise a significant part of genomes and are involved in their evolvability. The hobo element is found as an active class II transposable element in Drosophila melanogaster that is able to induce gonadal dysgenesis. Some hobo-related sequences (hRSs) are thought to be relics of old "hobo" invasions, and are therefore ancient genomic constituents.

View Article and Find Full Text PDF