Adaptation to drought is one of the most important challenges for agriculture. The root system, and its integration with the soil, is fundamental in conferring drought tolerance. At the same time, it is extremely challenging to study.
View Article and Find Full Text PDFIn woody perennial plants, quantitative genetics and association studies remain scarce for root-related traits, due to the time required to obtain mature plants and the complexity of phenotyping. In grapevine, a grafted cultivated plant, most of the rootstocks used are hybrids between American Vitis species (V. rupestris, V.
View Article and Find Full Text PDFIn grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy for helping plants to adapt to climate change. The rootstocks used for grapevine are hybrids of various American , including . .
View Article and Find Full Text PDFHow evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments.
View Article and Find Full Text PDFAbstractPopulation response functions based on climatic and phenotypic data from common gardens have long been the gold standard for predicting quantitative trait variation in new environments. However, prediction accuracy might be enhanced by incorporating genomic information that captures the neutral and adaptive processes behind intrapopulation genetic variation. We used five clonal common gardens containing 34 provenances (523 genotypes) of maritime pine ( Aiton) to determine whether models combining climatic and genomic data capture the underlying drivers of height growth variation and thus improve predictions at large geographical scales.
View Article and Find Full Text PDFA decade of genetic association studies in multiple organisms suggests that most complex traits are polygenic; that is, they have a genetic architecture determined by numerous loci, each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and time is crucial to understand the genetic basis of phenotypic variation. We applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait.
View Article and Find Full Text PDFFrequency and intensity of heat waves and drought events are expected to increase in Europe due to climate change. European beech (Fagus sylvatica L.) is one of the most important native tree species in Europe.
View Article and Find Full Text PDFEuropean beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range.
View Article and Find Full Text PDFWhile recent advances have been gained on genome evolution in angiosperm lineages, virtually nothing is known about karyotype evolution in the other group of seed plants, the gymnosperms. Here we used high density gene-based linkage mapping to compare the karyotype structure of two families of conifers (the most abundant group of gymnosperms) separated around 290 million years ago: Pinaceae and Cupressaceae. We propose for the first time a model based on the fusion of 20 ancestral chromosomal blocks that may have shaped the modern karyotpes of Pinaceae (with n=12) and Cupressaceae (with n=11).
View Article and Find Full Text PDFBackground: Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought.
Results: High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes.
Background: Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations.
View Article and Find Full Text PDFDrought is an important environmental factor in Mediterranean ecosystems affecting seedling recruitment, productivity or susceptibility to fires and pathogens. Studying water use efficiency in these environments is crucial due to its adaptive value allowing trees to cope with low water availability. We studied the phenotypic variability and genetic control of intrinsic water use efficiency (WUE(i)) and related traits in a full-sib family of Pinus pinaster under drought imposition.
View Article and Find Full Text PDF