Here, we report the complete genome of the non-aflatoxigenic isolate La3279, which is an active ingredient of the aflatoxin biocontrol product Aflasafe. The chromosome-scale assembly clarifies the deletion pattern in the aflatoxin biosynthesis gene cluster and corrects a misidentified assembly previously published for this isolate.
View Article and Find Full Text PDFFungi can synthesize a broad array of secondary metabolite chemicals. The genes underpinning their biosynthesis are typically arranged in tightly linked clusters in the genome. For example, ∼25 genes responsible for the biosynthesis of carcinogenic aflatoxins by Aspergillus section Flavi species are grouped in a ∼70 Kb cluster.
View Article and Find Full Text PDFThe cultivation of rice in Africa dates back more than 3,000 years. Interestingly, African rice is not of the same origin as Asian rice (Oryza sativa L.) but rather is an entirely different species (i.
View Article and Find Full Text PDFThe pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES).
View Article and Find Full Text PDFBackground: Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago.
View Article and Find Full Text PDFWe report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.
View Article and Find Full Text PDFFull-length cDNA (FLcDNA) sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.
View Article and Find Full Text PDFMaize is a major cereal crop and an important model system for basic biological research. Knowledge gained from maize research can also be used to genetically improve its grass relatives such as sorghum, wheat, and rice. The primary objective of the Maize Genome Sequencing Consortium (MGSC) was to generate a reference genome sequence that was integrated with both the physical and genetic maps.
View Article and Find Full Text PDFMost of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences.
View Article and Find Full Text PDFWe describe the establishment and analysis of a genus-wide comparative framework composed of 12 bacterial artificial chromosome fingerprint and end-sequenced physical maps representing the 10 genome types of Oryza aligned to the O. sativa ssp. japonica reference genome sequence.
View Article and Find Full Text PDFA comparative physical map of the AA genome (Oryza sativa) and the BB genome (O. punctata) was constructed by aligning a physical map of O. punctata, deduced from 63,942 BAC end sequences (BESs) and 34,224 fingerprints, onto the O.
View Article and Find Full Text PDF