In plants, guanosine monophosphate (GMP) is synthesized from adenosine monophosphate via inosine monophosphate and xanthosine monophosphate (XMP) in the cytosol. It has been shown recently that the catabolic route for adenylate-derived nucleotides bifurcates at XMP from this biosynthetic route. Dephosphorylation of XMP and GMP by as yet unknown phosphatases can initiate cytosolic purine nucleotide catabolism.
View Article and Find Full Text PDFThe sesquiterpenoid polygodial, which belongs to the drimane family, has been shown to be an antifeedant for a number of herbivorous insects. It is presumed to be synthesized from farnesyl diphosphate via drimenol, subsequent C-12 hydroxylation and further oxidations at both C-11 and C-12 to form a dialdehyde. Here, we have identified a drimenol synthase (PhDS) and a cytochrome P450 drimenol oxidase (PhDOX1) from Persicaria hydropiper.
View Article and Find Full Text PDFThe natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways.
View Article and Find Full Text PDF