Phys Chem Chem Phys
September 2021
Aluminum-based metal-organic framework (MOF) CAU-10-H is a promising candidate for heat transformation and water harvesting applications due to its hydrothermal stability, beneficial step-wise water adsorption isotherm and low toxicity. In this study, the effects of the framework flexibility and structural defects on the mechanism of water sorption in CAU-10-H were studied by grand canonical Monte Carlo (GCMC) methods. It was shown by the simulations that the rigid ideal MOF framework is hydrophobic.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) possess unique flexibility of structure and properties, which drives them toward applications as water adsorbents in many emerging technologies, such as adsorptive heat transformation, water harvesting from the air, dehumidification, and desalination. A deep understanding of the surface phenomena is a prerequisite for the target-oriented design of MOFs with the required adsorption properties. In this work, we comprehensively study the effect of functional groups on water adsorption on a series CAU-10- substituted with both hydrophilic ( = NH) and hydrophobic ( = NO) groups in the linker.
View Article and Find Full Text PDFThe organic linker in a metal organic framework (MOF) affects its adsorption behavior and performance, and its structure and dynamics play a role in the modulation of the adsorption properties. In this work, the combination of H nuclear magnetic resonance (NMR) longitudinal relaxometry and theoretical calculations allowed details of the structure and dynamics of the organic linker in the NH-MIL-125 MOF to be obtained. In particular, fast field cycling (FFC) NMR, applied here for the first time on MOFs, was used to disclose the dynamics of the amino group and its electronic environment through the analysis of the N quadrupole relaxation peaks, observed in the frequency interval 0.
View Article and Find Full Text PDF