Publications by authors named "Marina V Shirmanova"

Background: The wide variability in clinical responses to anti-tumor immunotherapy drives the search for personalized strategies. One of the promising approaches is drug screening using patient-derived models composed of tumor and immune cells. In this regard, the selection of an appropriate in vitro model and the choice of cellular response assay are critical for reliable predictions.

View Article and Find Full Text PDF

Background: Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood.

Methods: In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor.

View Article and Find Full Text PDF

Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients' tumor samples.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a minimally invasive method for cancer treatment, one of the effects of which is the oxidation of membrane lipids. However, changes in biophysical properties of lipid membranes during PDT have been poorly explored. In this work, we investigated the effects of PDT on membrane microviscosity in cancer cells in the culture and tumor xenografts.

View Article and Find Full Text PDF

This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging.

View Article and Find Full Text PDF

The oxygen level in a tumor is a crucial factor for its development and response to therapies. Phosphorescence lifetime imaging (PLIM) with the use of phosphorescent oxygen probes is a highly sensitive, noninvasive optical technique for the assessment of molecular oxygen in living cells and tissues. Here, we present a protocol for microscopic mapping of oxygen distribution in a mouse tumor model in vivo.

View Article and Find Full Text PDF

The biophysical properties of cells described at the level of whole cells or their membranes have many consequences for their biological behavior. However, our understanding of the relationships between mechanical parameters at the level of cell (stiffness, viscoelasticity) and at the level of the plasma membrane (fluidity) remains quite limited, especially in the context of pathologies, such as cancer. Here, we investigated the correlations between cells' stiffness and viscoelastic parameters, mainly determined via the actin cortex, and plasma membrane microviscosity, mainly determined via its lipid profile, in cancer cells, as these are the keys to their migratory capacity.

View Article and Find Full Text PDF

We present a laser scanning system for macroscopic samples that records fully resolved decay curves in individual pixels, resolves the images in 16 wavelength channels, and records simultaneously at several laser wavelengths. By using confocal detection, the system delivers images that are virtually free of lateral scattering and out-of-focus haze. Image formats can be up to 256 × 256 pixels and up to 1024 time channels.

View Article and Find Full Text PDF

In this work, we obtained three new phosphorescent iridium complexes (-) of general stoichiometry [Ir(N^C)(N^N)]Cl decorated with oligo(ethylene glycol) fragments to make them water-soluble and biocompatible, as well as to protect them from aggregation with biomolecules such as albumin. The major photophysical characteristics of these phosphorescent complexes are determined by the nature of two cyclometallating ligands (N^C) based on 2-pyridine-benzothiophene, since quantum chemical calculations revealed that the electronic transitions responsible for the excitation and emission are localized mainly at these fragments. However, the use of various diimine ligands (N^N) proved to affect the quantum yield of phosphorescence and allowed for changing the complexes' sensitivity to oxygen, due to the variations in the steric accessibility of the chromophore center for O molecules.

View Article and Find Full Text PDF

Personalized strategies in glioblastoma treatment are highly necessary. One of the possible approaches is drug screening using patient-derived tumor cells. However, this requires reliable methods for assessment of the response of tumor cells to treatment.

View Article and Find Full Text PDF

Assessment of T-cell response to the tumor is important for diagnosis of the disease and monitoring of therapeutic efficacy. For this, new non-destructive label-free methods are required. Fluorescence lifetime imaging (FLIM) of metabolic coenzymes is a promising innovative technology for the assessment of the functional status of cells.

View Article and Find Full Text PDF

Tumor cells are well adapted to grow in conditions of variable oxygen supply and hypoxia by switching between different metabolic pathways. However, the regulatory effect of oxygen on metabolism and its contribution to the metabolic heterogeneity of tumors have not been fully explored. In this study, we develop a methodology for the simultaneous analysis of cellular metabolic status, using the fluorescence lifetime imaging microscopy (FLIM) of metabolic cofactor NAD(P)H, and oxygen level, using the phosphorescence lifetime imaging (PLIM) of a new polymeric Ir(III)-based sensor (PIr3) in tumors in vivo.

View Article and Find Full Text PDF

Cellular redox status and the level of reactive oxygen species (ROS) are important regulators of apoptotic potential, playing a crucial role in the growth of cancer cell and their resistance to apoptosis. However, the relationships between the redox status and ROS production during apoptosis remain poorly explored. In this study, we present an investigation on the correlations between the production of ROS, the redox ratio FAD/NAD(P)H, the proportions of the reduced nicotinamide cofactors NADH and NADPH, and caspase-3 activity in cancer cells at the level of individual cells.

View Article and Find Full Text PDF

Molecular, morphological, and physiological heterogeneity is the inherent property of cells which governs differences in their response to external influence. Tumor cell metabolic heterogeneity is of a special interest due to its clinical relevance to tumor progression and therapeutic outcomes. Rapid, sensitive, and noninvasive assessment of metabolic heterogeneity of cells is a great demand for biomedical sciences.

View Article and Find Full Text PDF

New water-soluble polynorbornenes - containing oligoether, amino acid groups and luminophoric complexes of iridium(III) were synthesized by ring-opening metathesis polymerization. The polymeric products in organic solvents and in water demonstrate intense photoluminescence in the red spectral region. The polymers and with 1-phenylisoquinoline cyclometalating ligands in iridium fragments reveal 4-6 fold higher emission quantum yields in solutions than those of and that contain iridium complexes with 1-(thien-2-yl)isoquinoline cyclometalating ligands.

View Article and Find Full Text PDF

Background: Therapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG.

Methods: O detection in miniSOG and flavin mononucleotide (FMN) solutions was performed.

View Article and Find Full Text PDF

Synthesis of biocompatible near infrared phosphorescent complexes and their application in bioimaging as triplet oxygen sensors in live systems are still challenging areas of organometallic chemistry. We have designed and synthetized four novel iridium [Ir(N^C)(N^N)] complexes (N^C-benzothienyl-phenanthridine based cyclometalated ligand; N^N-pyridin-phenanthroimidazol diimine chelate), decorated with oligo(ethylene glycol) groups to impart these emitters' solubility in aqueous media, biocompatibility, and to shield them from interaction with bio-environment. These substances were fully characterized using NMR spectroscopy and ESI mass-spectrometry.

View Article and Find Full Text PDF

The phase of the cell cycle determines numerous aspects of cancer cell behaviour including invasiveness, ability to migrate and responsiveness to cytotoxic drugs. To non-invasively monitor progression of cell cycle in vivo, a family of genetically encoded fluorescent indicators, FUCCI (fluorescent ubiquitination-based cell cycle indicator), has been developed. Existing versions of FUCCI are based on fluorescent proteins of two or more different colors fused to cell-cycle-dependent degradation motifs.

View Article and Find Full Text PDF

Significance: Despite the importance of the cell membrane in regulation of drug activity, the influence of drug treatments on its physical properties is still poorly understood. The combination of fluorescence lifetime imaging microscopy (FLIM) with specific viscosity-sensitive fluorescent molecular rotors allows the quantification of membrane viscosity with high spatiotemporal resolution, down to the individual cell organelles.

Aim: The aim of our work was to analyze microviscosity of the plasma membrane of living cancer cells during chemotherapy with cisplatin using FLIM and correlate the observed changes with lipid composition and cell's response to treatment.

View Article and Find Full Text PDF

Exploring metabolism in human tumors at the cellular level remains a challenge. The reduced form of metabolic cofactor NAD(P)H is one of the major intrinsic fluorescent components in tissues and a valuable indicator of cellular metabolic activity. Fluorescence lifetime imaging (FLIM) enables resolution of both the free and protein-bound fractions of this cofactor, and thus, high sensitivity detection of relative changes in the NAD(P)H-dependent metabolic pathways in real time.

View Article and Find Full Text PDF
Article Synopsis
  • Upregulation of TNF-α is linked to autoimmune diseases, prompting the development of fluorescent antibodies for personalized therapy.
  • Two types of recombinant fluorescent proteins targeting TNF were created: BTN-Kat, which binds TNF without neutralizing it, and ITN-Kat, which binds and neutralizes human TNF.
  • BTN-Kat is useful for whole-body imaging, while ITN-Kat shows promise as a theranostic agent in treating autoimmune diseases.
View Article and Find Full Text PDF

Although chemotherapy remains one of the main types of treatment for cancer, treatment failure is a frequent occurrence, emphasizing the need for new approaches to the early assessment of tumor response. The aim of this study was to search for indicators based on optical imaging of cellular metabolism and of collagen in tumors in vivo that enable evaluation of their response to chemotherapy. The study was performed on a mouse colorectal cancer model with the use of cisplatin, paclitaxel, and irinotecan.

View Article and Find Full Text PDF

While laser scanning fluorescence lifetime imaging (FLIM) is a powerful approach for cell biology, its small field of view (typically less than 1 mm) makes it impractical for the imaging of large biological samples that is often required for biomedical applications. Here we present a system that allows performing FLIM on macroscopic samples as large as 18 mm with a lateral resolution of 15 μm. The performance of the system is verified with FLIM of endogenous metabolic cofactor reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, and genetically encoded fluorescent protein mKate2 in a mouse tumor in vivo.

View Article and Find Full Text PDF

Paclitaxel, a widely used antimicrotubular agent, predominantly eliminates rapidly proliferating cancer cells, while slowly proliferating and quiescent cells can survive the treatment, which is one of the main reasons for tumor recurrence and non-responsiveness to the drug. To improve the efficacy of chemotherapy, biomarkers need to be developed to enable monitoring of tumor responses. In this study we considered the auto-fluorescent metabolic cofactors NAD(P)H and FAD as possible indicators of cancer cell response to therapy with paclitaxel.

View Article and Find Full Text PDF