PTSD is associated with disturbed hepatic morphology and metabolism. Neuronal mitochondrial dysfunction is considered a subcellular determinant of PTSD, but a link between hepatic mitochondrial dysfunction and hepatic damage in PTSD has not been demonstrated. Thus, the effects of experimental PTSD on the livers of high anxiety (HA) and low anxiety (LA) rats were compared, and mitochondrial determinants underlying the difference in their hepatic damage were investigated.
View Article and Find Full Text PDFStress-induced conditions are associated with impaired cerebral blood flow (CBF) and increased risk of dementia and stroke. However, these conditions do not develop in resilient humans and animals. Here the effects of predator stress (PS, cat urine scent, ten days) on CBF and mechanisms of CBF regulation were compared in PS-susceptible (PSs) and PS-resilient (PSr) rats.
View Article and Find Full Text PDFSusceptibility and resilience to post-traumatic stress disorder (PTSD) are recognized, but their mechanisms are not understood. Here, the hexobarbital sleep test (HST) was used to elucidate mechanisms of PTSD resilience or susceptibility. A HST was performed in rats 30 days prior to further experimentation.
View Article and Find Full Text PDFBackground: Rats exposed to chronic predator scent stress mimic the phenotype of complex post-traumatic stress disorder (PTSD) in humans, including altered adrenal morphology and function. High- and low-anxiety phenotypes have been described in rats exposed to predator scent stress (PSS). This study aimed to determine whether these high- and low-anxiety phenotypes correlate with changes in adrenal histomorphology and corticosteroid production.
View Article and Find Full Text PDFJ Appl Physiol (1985)
March 2021
Traumatic stress causes posttraumatic stress disorder (PTSD). PTSD is associated with cardiovascular diseases and risk of sudden cardiac death in some subjects. We compared effects of predator stress (PS, cat urine scent, 10 days) on mechanisms of cardiac injury and protection in experimental PTSD-vulnerable (PTSD) and -resistant (PTSDr) rats.
View Article and Find Full Text PDFPosttraumatic stress disorder (PTSD) causes mental and somatic diseases. Intermittent hypoxic conditioning (IHC) has cardio-, vaso-, and neuroprotective effects and alleviates experimental PTSD. IHC's ability to alleviate harmful PTSD effects on rat heart, liver, and brain was examined.
View Article and Find Full Text PDFNonpharmacological treatments of stress-induced disorders are promising, since they enhance endogenous stress defense systems, are free of side effects, and have few contraindications. The present study tested the hypothesis that intermittent hypoxia conditioning (IHC) ameliorates behavioral, biochemical, and morphological signs of experimental posttraumatic stress disorder (PTSD) induced in rats with a model of predator stress (10-day exposure to cat urine scent, 15 min daily followed by 14 days of stress-free rest). After the last day of stress exposure, rats were conditioned in an altitude chamber for 14 days at a 1,000-m simulated altitude for 30 min on day 1 with altitude and duration progressively increasing to 4,000 m for 4 h on day 5.
View Article and Find Full Text PDFThe present study is focused on the relationship between monoamine oxidase (MAO) activity and hepatic content of cytochrome P450 (CYP), which reflects the status of microsomal oxidation. For vital integrative evaluation of hepatic microsomal oxidation in rats, the hexobarbital sleep test was used, and content of CYP was measured in hepatic microsomes. Rats with short hexobarbital sleep time (SHST) had higher content of microsomal CYP than rats with long hexobarbital sleep time (LHST).
View Article and Find Full Text PDF