Structures, or spatial arrangements of matter and energy, including some fields (e.g., velocity or pressure) are ubiquitous in research applications and frequently require description for subsequent analysis, or stochastic reconstruction from limited data.
View Article and Find Full Text PDFHeterogeneity is the concept we encounter in numerous research areas and everyday life. While "not mixing apples and oranges" is easy to grasp, a more quantitative approach to such segregation is not always readily available. Consider the problem from a different angle: To what extent does one have to make apples more orange and oranges more "apple-shaped" to put them into the same basket (according to their appearance alone)? This question highlights the central problem of the blurred interface between heterogeneous and homogeneous, which also depends on the metrics used for its identification.
View Article and Find Full Text PDFCorrelation functions (CFs) are universal structural descriptors; surface-surface F_{ss} and surface-void F_{sv} CFs are a subset containing additional information about the interface between the phases. The description of the interface between pores and solids in porous media is of particular importance and recently Ma and Torquato [Phys. Rev.
View Article and Find Full Text PDFWhile it is well known that permeability is a tensorial property, it is usually reported as a scalar property or only diagonal values are reported. However, experimental evaluation of tensorial flow properties is problematic. Pore-scale modeling using three-dimensional (3D) images of porous media with subsequent upscaling to a continuum scale (homogenization) is a valuable alternative.
View Article and Find Full Text PDFStochastic reconstructions based on universal correlation functions allow obtaining spatial structures based on limited input data or to fuse multiscale images from different sources. Current application of such techniques is severely hampered by the computational cost of the annealing optimization procedure. In this study we propose a novel hierarchical annealing method based on rescaled correlation functions, which improves both accuracy and computational efficiency of reconstructions while not suffering from disadvantages of existing speeding-up techniques.
View Article and Find Full Text PDFSpatial data captured with sensors of different resolution would provide a maximum degree of information if the data were to be merged into a single image representing all scales. We develop a general solution for merging multiscale categorical spatial data into a single dataset using stochastic reconstructions with rescaled correlation functions. The versatility of the method is demonstrated by merging three images of shale rock representing macro, micro and nanoscale spatial information on mineral, organic matter and porosity distribution.
View Article and Find Full Text PDFStructural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport.
View Article and Find Full Text PDF