Recent studies reveal that carbon nanostructures show anomalous piezoelectric properties when the central symmetry of their structure is violated. Particular focus is given to carbon nanotubes (CNTs) with initial significant curvature of the graphene sheet surface, which leads to an asymmetric redistribution of the electron density. This paper presents the results of studies on the piezoelectric properties of aligned multi-walled CNTs.
View Article and Find Full Text PDFThis paper reports the results of the influence of the energy of laser pulses during laser ablation on the morphology and electro-physical properties of LiNbO nanocrystalline films. It is found that increasing laser pulse energy from 180 to 220 mJ results in the concentration of charge carriers in LiNbO films decreasing from 8.6 × 10 to 1.
View Article and Find Full Text PDFThe paper presents a theoretical model of the catalytic centers formation processes during annealing of multilayer nanosized metal films for carbon nanotubes growth. The approach to the description of the model is based on the mass transfer processes under the influence of mechanical thermoelastic stresses, which arise due to the difference in the thermal expansion coefficients of the substrate materials and nanosized metal layers. The thermal stress gradient resulting from annealing creates a drop in the chemical potential over the thickness of the film structure.
View Article and Find Full Text PDFRecent studies in nanopiezotronics have indicated that strained graphene may exhibit abnormal flexoelectric and piezoelectric properties. Similar assumptions have been made with regard to the properties of carbon nanotubes (CNTs), however, this has not so far been confirmed. This paper presents the results of our experimental studies confirming the occurrence of a surface piezoelectric effect in multi-walled CNTs under a non-uniform strain.
View Article and Find Full Text PDF