Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation.
View Article and Find Full Text PDFPurpose: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here, we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation and to support variant classification within the ACMG/AMP framework.
View Article and Find Full Text PDFPurpose: The terminology used for gene-disease curation and variant annotation to describe inheritance, allelic requirement, and both sequence and functional consequences of a variant is currently not standardized. There is considerable discrepancy in the literature and across clinical variant reporting in the derivation and application of terms. Here we standardize the terminology for the characterization of disease-gene relationships to facilitate harmonized global curation, and to support variant classification within the ACMG/AMP framework.
View Article and Find Full Text PDFPurpose: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed.
Methods: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms.
Understanding whether there is enough evidence to implicate a gene's role in a given disease, as well as the mechanisms by which variants in this gene might cause this disease, is essential to determine clinical relevance. The National Institutes of Health-funded Clinical Genome Resource (ClinGen) has developed evaluation frameworks to assess both the strength of evidence supporting a relationship between a gene and disease (gene-disease validity), and whether loss (haploinsufficiency) or gain (triplosensitivity) of individual genes or genomic regions is a mechanism for disease (dosage sensitivity). ClinGen actively applies these frameworks across multiple disease domains, and makes this information publicly available via its website (https://www.
View Article and Find Full Text PDFPurpose: The ClinGen Variant Curation Expert Panels (VCEPs) provide disease-specific rules for accurate variant interpretation. Using the hearing loss-specific American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, the Hearing Loss VCEP (HL VCEP) illustrates the utility of expert specifications in variant interpretation.
Methods: A total of 157 variants across nine HL genes, previously submitted to ClinVar, were curated by the HL VCEP.
Purpose: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFPurpose: Proper interpretation of genomic variants is critical to successful medical decision making based on genetic testing results. A fundamental prerequisite to accurate variant interpretation is the clear understanding of the clinical validity of gene-disease relationships. The Clinical Genome Resource (ClinGen) has developed a semiquantitative framework to assign clinical validity to gene-disease relationships.
View Article and Find Full Text PDFDue to the high genetic heterogeneity of hearing loss (HL), current clinical testing includes sequencing large numbers of genes, which often yields a significant number of novel variants. Therefore, the standardization of variant interpretation is crucial to provide consistent and accurate diagnoses. The Hearing Loss Variant Curation Expert Panel was created within the Clinical Genome Resource to provide expert guidance for standardized genomic interpretation in the context of HL.
View Article and Find Full Text PDFThe 2015 ACMG/AMP sequence variant interpretation guideline provided a framework for classifying variants based on several benign and pathogenic evidence criteria, including a pathogenic criterion (PVS1) for predicted loss of function variants. However, the guideline did not elaborate on specific considerations for the different types of loss of function variants, nor did it provide decision-making pathways assimilating information about variant type, its location, or any additional evidence for the likelihood of a true null effect. Furthermore, this guideline did not take into account the relative strengths for each evidence type and the final outcome of their combinations with respect to PVS1 strength.
View Article and Find Full Text PDFVariant interpretation depends on accurate annotations using biologically relevant transcripts. We have developed a systematic strategy for designating primary transcripts and have applied it to 109 hearing loss-associated genes that were divided into three categories. Category 1 genes (n = 38) had a single transcript; category 2 genes (n = 33) had multiple transcripts, but a single transcript was sufficient to represent all exons; and category 3 genes (n = 38) had multiple transcripts with unique exons.
View Article and Find Full Text PDFClinVar Miner is a Web-based suite that utilizes the data held in the National Center for Biotechnology Information's ClinVar archive. The goal is to render the data more accessible to processes pertaining to conflict resolution of variant interpretation as well as tracking details of data submission and data management for detailed variant curation. Here, we establish the use of these tools to address three separate use cases and to perform analyses across submissions.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
September 2017
The blood vasculature responds to insulin, influencing hemodynamic changes in the periphery, which promotes tissue nutrient and oxygen delivery and thus metabolic function. The lymphatic vasculature regulates fluid and lipid homeostasis, and impaired lymphatic function can contribute to atherosclerosis and obesity. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and lymphangiogenesis as well as atherosclerosis.
View Article and Find Full Text PDFObjective: Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis.
View Article and Find Full Text PDFPrevious studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961.
View Article and Find Full Text PDFThe liver is a major site of glucose, fatty acid, and triglyceride (TG) synthesis and serves as a major regulator of whole body nutrient homeostasis. Chronic exposure of humans or rodents to high-calorie diets promotes non-alcoholic fatty liver disease, characterized by neutral lipid accumulation in lipid droplets (LD) of hepatocytes. Here we show that the LD protein hypoxia-inducible gene 2 (Hig2/Hilpda) functions to enhance lipid accumulation in hepatocytes by attenuating TG hydrolysis.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease is prevalent in human obesity and type 2 diabetes, and is characterized by increases in both hepatic triglyceride accumulation (denoted as steatosis) and expression of pro-inflammatory cytokines such as IL-1β. We report here that the development of hepatic steatosis requires IL-1 signaling, which upregulates Fatty acid synthase to promote hepatic lipogenesis. Using clodronate liposomes to selectively deplete liver Kupffer cells in ob/ob mice, we observed remarkable amelioration of obesity-induced hepatic steatosis and reductions in liver weight, triglyceride content and lipogenic enzyme expressions.
View Article and Find Full Text PDF