The endometrium undergoes extensive changes to prepare for embryo implantation and microRNAs (miRNAs) have been described as playing a significant role in the regulation of endometrial receptivity. However, there is no consensus about the miRNAs involved in mid-secretory endometrial functions. We analysed the complete endometrial miRNome from early secretory (pre-receptive) and mid-secretory (receptive) phases from fertile women and from patients with recurrent implantation failure (RIF) to reveal differentially expressed (DE) miRNAs in the mid-secretory endometrium.
View Article and Find Full Text PDFStudy Question: Does cellular composition of the endometrial biopsy affect the gene expression profile of endometrial whole-tissue samples?
Summary Answer: The differences in epithelial and stromal cell proportions in endometrial biopsies modify the whole-tissue gene expression profiles and affect the results of differential expression analyses.
What Is Already Known: Each cell type has its unique gene expression profile. The proportions of epithelial and stromal cells vary in endometrial tissue during the menstrual cycle, along with individual and technical variation due to the method and tools used to obtain the tissue biopsy.
Background: Alterations in endometrial DNA methylation profile have been proposed as one potential mechanism initiating the development of endometriosis. However, the normal endometrial methylome is influenced by the cyclic hormonal changes, and the menstrual cycle phase-dependent epigenetic signature should be considered when studying endometrial disorders. So far, no studies have been performed to evaluate the menstrual cycle influences and endometriosis-specific endometrial methylation pattern at the same time.
View Article and Find Full Text PDFBackground: Estrogen (E2) and progesterone (P4) are key players in the maturation of the human endometrium. The corresponding steroid hormone modulators, tamoxifen (TAM) and mifepristone (RU486) are widely used in breast cancer therapy and for contraception purposes, respectively.
Methodology/principal Findings: Gene expression profiling of the human endometrial Ishikawa cancer cell line treated with E2 and P4 for 3 h and 12 h, and TAM and RU486 for 12 h, was performed using RNA-sequencing.