The identification of proteins from spectra derived from a tandem mass spectrometry experiment involves several challenges: matching each observed spectrum to a peptide sequence, ranking the resulting collection of peptide-spectrum matches, assigning statistical confidence estimates to the matches, and identifying the proteins. The present work addresses algorithms to rank peptide-spectrum matches. Many of these algorithms, such as PeptideProphet, IDPicker, or Q-ranker, follow a similar methodology that includes representing peptide-spectrum matches as feature vectors and using optimization techniques to rank them.
View Article and Find Full Text PDFMol Cell Proteomics
February 2012
The goal of many shotgun proteomics experiments is to determine the protein complement of a complex biological mixture. For many mixtures, most methodological approaches fall significantly short of this goal. Existing solutions to this problem typically subdivide the task into two stages: first identifying a collection of peptides with a low false discovery rate and then inferring from the peptides a corresponding set of proteins.
View Article and Find Full Text PDFSalinity reduces Ca(2+) availability, transport, and mobility to growing regions of the plant and supplemental Ca(2+) is known to reduce salinity damages. This study was undertaken to unravel some of the ameliorative mechanisms of Ca(2+) on salt stress at the cellular and tissue levels. Zea mays L.
View Article and Find Full Text PDFShotgun proteomics coupled with database search software allows the identification of a large number of peptides in a single experiment. However, some existing search algorithms, such as SEQUEST, use score functions that are designed primarily to identify the best peptide for a given spectrum. Consequently, when comparing identifications across spectra, the SEQUEST score function Xcorr fails to discriminate accurately between correct and incorrect peptide identifications.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2007
We have developed a mathematical approach to the study of dynamical biological networks, based on combining large-scale numerical simulation with nonlinear "dimensionality reduction" methods. Our work was motivated by an interest in the complex organization of the signaling cascade centered on the neuronal phosphoprotein DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of molecular weight 32,000). Our approach has allowed us to detect robust features of the system in the presence of noise.
View Article and Find Full Text PDFVarious biological processes exhibit characteristics that vary dramatically in response to different input conditions or changes in the history of the process itself. One of the examples studied here, the Ras-PKC-mitogen-activated protein kinase (MAPK) bistable pathway, follows two distinct dynamics (modes) depending on duration and strength of EGF stimulus. Similar examples are found in the behavior of the cell cycle and the immune system.
View Article and Find Full Text PDFWe collaborate in a research program aimed at creating a rigorous framework, experimental infrastructure, and computational environment for understanding, experimenting with, manipulating, and modifying a diverse set of fundamental biological processes at multiple scales and spatio-temporal modes. The novelty of our research is based on an approach that (i) requires coevolution of experimental science and theoretical techniques and (ii) exploits a certain universality in biology guided by a parsimonious model of evolutionary mechanisms operating at the genomic level and manifesting at the proteomic, transcriptomic, phylogenic, and other higher levels. Our current program in "systems biology" endeavors to marry large-scale biological experiments with the tools to ponder and reason about large, complex, and subtle natural systems.
View Article and Find Full Text PDF