Hydrogels made from globular proteins cross-linked covalently into a stable network are becoming an important type of biomaterial, with applications in artificial tissue design and cell culture scaffolds, and represent a promising system to study the mechanical and biochemical unfolding of proteins in crowded environments. Due to the small size of the globular protein domains, typically 2-5 nm, the primary network allows for a limited transfer of protein molecules and prevents the passing of particles and aggregates with dimensions over 100 nm. Here, we demonstrate a method to produce protein materials with micrometer-sized pores and increased permeability.
View Article and Find Full Text PDF