Publications by authors named "Marina Shuklina"

Plant viruses and virus-like particles (VLPs) are safe for mammals and can be used as a carrier/platform for the presentation of foreign antigens in vaccine development. The aim of this study was to use the coat protein (CP) of Physalis mottle virus (PhMV) as a carrier to display the extracellular domain of the transmembrane protein M2 of influenza A virus (M2e). M2e is a highly conserved antigen, but to induce an effective immune response it must be linked to an adjuvant or carrier VLP.

View Article and Find Full Text PDF

Conserved influenza virus proteins, such as the hemagglutinin stem domain (HA2), nucleoprotein (NP), and matrix protein (M), are the main targets in the development of universal influenza vaccines. Previously, we constructed a recombinant vaccine protein Flg-HA2-2-4M2ehs containing the extracellular domain of the M2 protein (M2e) and the aa76-130 sequence of the second HA subunit as target antigens. It demonstrated immunogenicity and broad protection against influenza A viruses after intranasal and parenteral administration.

View Article and Find Full Text PDF

Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum recombinant vaccines based on conserved antigens. The extracellular domain of the transmembrane protein M2 of influenza A virus (M2e) is highly conserved but poorly immunogenic and needs to be fused to an adjuvant protein or carrier virus-like particles (VLPs) to increase immunogenicity and provide protection against infection. In this study, we obtained VLPs based on capsid proteins (CPs) of single-stranded RNA phages Beihai32 and PQ465 bearing the M2e peptides.

View Article and Find Full Text PDF

Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new influenza A strains. Efficient control of infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A combination of several such antigens, including the conserved region of the second subunit of the hemagglutinin (HA2), the extracellular domain of the M2 protein (M2e), and epitopes of nucleoprotein (NP), which together can elicit an antibody- and cell-mediated immune response, would be preferred for vaccine development.

View Article and Find Full Text PDF

Intranasal vaccination using influenza vectors is a promising approach to developing vaccines against respiratory pathogens due to the activation of the mucosa-associated immune response. However, there is no clear evidence of a vector design that could be considered preferable. To find the optimal structure of an influenza vector with a modified NS genomic segment, we constructed four vector expressing identical transgene sequences inherited from the F protein of the respiratory syncytial virus (RSV).

View Article and Find Full Text PDF

Despite advances in vaccine development, influenza remains a persistent global health threat and the search for a broad-spectrum recombinant vaccine against influenza continues. The extracellular domain of the transmembrane protein M2 (M2e) of the influenza A virus is highly conserved and can be used to develop a universal vaccine. M2e is a poor immunogen by itself, but it becomes highly immunogenic when linked to an appropriate carrier.

View Article and Find Full Text PDF

Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by β-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state).

View Article and Find Full Text PDF

Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines. Recombinant proteins incorporating conserved influenza A virus peptides are one of the platforms for the development of cross-protective influenza vaccines. We constructed a recombinant protein Flg-HA2-2-4M2ehs, in which the extracellular domain of the M2 protein (M2e) and the sequence (aa76-130) of the second subunit of HA (HA2) were used as target antigens.

View Article and Find Full Text PDF

The extracellular domain of the M2 protein (M2e) and conserved region of the second subunit of the hemagglutinin (HA2) could be used for the development of broad-spectrum vaccines against influenza A. Here we obtained and characterized recombinant mosaic proteins containing tandem copies of M2e and HA2 fused to an artificial self-assembling peptide (SAP). The inclusion of SAP peptides in the fusion proteins enabled their self-assembly in vitro into spherical particles with a size of 30-50 nm.

View Article and Find Full Text PDF

A series of commercial inactivated influenza vaccines (IIVs) used in the Russian National Immunization Program were characterized to evaluate their protective properties on an animal model. Standard methods for quantifying immune response, such as hemagglutination inhibition (HAI) assay and virus neutralization (VN) assay, allowed us to distinguish the immunogenic effect of various IIVs from that of placebo. However, these standard approaches are not suitable to determine the role of various vaccine components in immune response maturation.

View Article and Find Full Text PDF

Background: Influenza infection could be more effectively controlled if a multi-purpose vaccine with the ability to induce responses against most, or all, influenza A subtypes could be generated. Conserved viral proteins are a promising basis for the creation of a broadly protective vaccine. In the present study, the immunogenicity and protective properties of three recombinant proteins (vaccine candidates), comprising conserved viral proteins fused with bacterial flagellin, were compared.

View Article and Find Full Text PDF

Background: Current influenza vaccines are mainly strain-specific and have limited efficacy in preventing new, potentially pandemic, influenza strains. Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum vaccines based on conserved antigens. A current trend in the design of universal flu vaccines is the construction of recombinant proteins based on combinations of various conserved epitopes of viral proteins (M1, M2, HA2, NP).

View Article and Find Full Text PDF