Spectrochim Acta A Mol Biomol Spectrosc
December 2024
In this study, we have investigated the surface-enhanced Raman scattering (SERS) spectra of myoglobin on silver substrates with different morphology. The aim was to determine the optimal parameters of analyte and substrate preparation for obtaining of high-amplitude SERS spectra of proteins. It is shown that not only the morphology of the silver film, but also the method of analyte molecules deposition on the SERS substrate plays an important role.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2018
Direct metallation of 2-hydroxyphthalocyanine J-type slipped-cofacial dimeric ligand by Mg, Zn, Cu, Ni and Co salts has been carried out to obtain corresponding metal complexes selectively without any noticeable dissociation or polymerization of the starting ligand. Integrated analysis of aggregation properties in the synthesized series has been conducted with the involvement of AFM microscopy, UV/Vis spectroscopy and theoretical assessment. As a result, a nonlinear relationship between absorption and concentration was found, with aggregation beginning to appear at concentrations above 3.
View Article and Find Full Text PDFOptical properties of two dimensional periodic system of the silicon micro-cones are investigated. The metasurface, composed of the silicon tips, shows enhancement of the local optical field. Finite element computer simulations as well as real experiment reveal anomalous optical response of the dielectric metasurface due to excitation of the dielectric resonances.
View Article and Find Full Text PDFThe seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip.
View Article and Find Full Text PDFHuman genome sequence variation in the form of single nucleotide polymorphisms (SNPs) as well as more complex structural variation such as insertions, duplications, and deletions underlies each individual's response to drugs and thus the likelihood of experiencing an adverse drug reaction. The ongoing challenge of the field of pharmacogenetics is to further understand the relationship between genetic variation and differential drug responses, with the overarching goal being that this will lead to improvements in both the safety and efficacy of drugs. The Affymetrix DMET Plus Premier Pack (DMET stands for Drug Metabolizing Enzymes and Transporters) enables highly multiplexed genotyping of known polymorphisms in Absorption, Distribution, Metabolism, and Elimination (ADME)-related genes on a single array.
View Article and Find Full Text PDFHighly multiplexed genomics assays are challenged by the need for a sufficient signal-to-noise ratio for each marker scored on a microarray-detection platform. Typically, as the number of markers scored (or target complexity) increases, either more assay-target material must be applied to the array or the specific activity of each marker must be proportionately increased. However, hybridization of excessive amounts of target to the microarray can result in elevated nonspecific binding and consequent degradation of information.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
November 2006
Decoding of fast cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca(2+)] ([Ca(2+)](m)) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca(2+)] ([Ca(2+)](em)) to >0.
View Article and Find Full Text PDFCapacitative Ca(2+) entry is a recently discovered Ca(2+) entry pathway that is activated on depletion of intracellular Ca(2+) stores, providing an avenue for store refilling. Despite recent progress in elucidating the capacitative Ca(2+) entry pathway, the mysteries of its molecular identity, its biophysical properties, and the store depletion signal remain.
View Article and Find Full Text PDF