Publications by authors named "Marina Seady"

Zika virus (ZIKV) is a neurotropic flavivirus that induces congenital Zika syndrome and neurodevelopmental disorders. Given that ZIKV can infect and replicate in neural cells, neurological complications in adult brain are also observed. Glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration.

View Article and Find Full Text PDF

Neuroinflammation is a pathophysiological feature of numerous neurological and psychiatric disorders. The immune response in the central nervous system, driven by microglia and astrocytes, leads to metabolic reprogramming towards aerobic glycolysis, a phenomenon known as the Warburg effect. The control of metabolic reprogramming via immunomodulation may represent a potential therapeutic target for providing protection against neuroinflammation, which contributes to neuronal dysfunction and death in several neurological disorders.

View Article and Find Full Text PDF

Antipsychotics are drugs commonly prescribed to treat a variety of psychiatric conditions. They are classified as typical and atypical, depending on their affinity for dopaminergic and serotonergic receptors. Although neurons have been assumed to be the major mediators of the antipsychotic pharmacological effects, glia, particularly astrocytes, have emerged as important cellular targets for these drugs.

View Article and Find Full Text PDF
Article Synopsis
  • * The study aimed to investigate how maternal separation affects anxiety-like behavior and memory extinction, alongside examining the role of a linseed oil diet rich in omega-3 fats in mitigating these effects.
  • * Results showed that maternal separation led to increased anxiety and freezing behavior during memory tests, but a linseed oil diet helped improve anxiety-like behavior, albeit with mixed results on inflammation and mitochondrial functionality in the amygdala.
View Article and Find Full Text PDF

Inflammation is a common feature of neurological disorders that alters cell function in microglia and astrocytes as well as other neuronal cell types. Astrocytes modulate blood flow, regulate glutamate metabolism, and exert antioxidant protection. When responding to inflammatory damage, astrocytes enhance immune cell infiltration and amplify inflammatory responses via the upregulation of cytokine production.

View Article and Find Full Text PDF

Astrocytes play fundamental roles in the maintenance of brain homeostasis. The dysfunction of these cells is widely associated with brain disorders, which are often characterized by variations in the astrocyte protein markers GFAP and S100B, in addition to alterations in some of its metabolic functions. To understand the role of astrocytes in neurodegeneration mechanisms, we induced some of these metabolic alterations, such as energy metabolism, using methylglyoxal (MG) or fluorocitrate (FC); and neuroinflammation, using lipopolysaccharide (LPS) and streptozotocin (STZ), which is used for inducing Alzheimer's disease (AD) in animal models.

View Article and Find Full Text PDF

Caloric restriction (CR) has been proposed as a nutritional strategy to combat chronic diseases, including neurodegenerative diseases, as well as to delay aging. However, despite the benefits of CR, questions remain about its underlying mechanisms and cellular and molecular targets. As inflammatory processes are the basis or accompany chronic diseases and aging, we investigated the protective role of CR in the event of an acute inflammatory stimulus.

View Article and Find Full Text PDF

Dementia is the most prevalent neurodegenerative disorder, characterized by progressive loss of memory and cognitive function. Inflammation is a major aspect in the progression of brain disorders, and inflammatory events have been associated with accelerated deterioration of cognitive function. In the present work, we investigated the impact of low-grade repeated inflammation stimuli induced by lipopolysaccharide (LPS) in hippocampal function and spatial memory.

View Article and Find Full Text PDF

Metformin, a biguanide compound (N-1,1-dimethylbiguanide), is widely prescribed for diabetes mellitus type 2 (T2D) treatment. It also presents a plethora of properties, such as anti-oxidant, anti-inflammatory, anti-apoptosis, anti-tumorigenic, and anti-AGE formation activity. However, the precise mechanism of action of metformin in the central nervous system (CNS) needs to be clarified.

View Article and Find Full Text PDF

Curcumin is a pleiotropic molecule with well-known anti-inflammatory effects. This molecule has attracted attention due to its capacity to pass the blood-brain-barrier and modulate central nervous system (CNS) cells, such as astrocytes. Astrocytes are the most numerous CNS cells, and play a pivotal role in inflammatory damage, a common feature in neurodegenerative diseases such as Alzheimer's Disease.

View Article and Find Full Text PDF

Astrocytes, the most abundant glial cells, have several metabolic functions, including ionic, neurotransmitter and energetic homeostasis for neuronal activity. Reactive astrocytes and their dysfunction have been associated with several brain disorders, including the epileptogenic process. Glial Fibrillary Acidic Protein (GFAP) and S100 calcium-binding protein B (S100B) are astrocyte biomarkers associated with brain injury.

View Article and Find Full Text PDF

Neuroinflammation is a common feature during the development of neurological disorders and neurodegenerative diseases, where glial cells, such as microglia and astrocytes, play key roles in the activation and maintenance of inflammatory responses in the central nervous system. Neuroinflammation is now known to involve a neurometabolic shift, in addition to an increase in energy consumption. We used two approaches (in vivo and ex vivo) to evaluate the effects of lipopolysaccharide (LPS)-induced neuroinflammation on neurometabolic reprogramming, and on the modulation of the glycolytic pathway during the neuroinflammatory response.

View Article and Find Full Text PDF

Astrocytes respond to injury by modifying the expression profile of several proteins, including the S100 calcium-binding protein B (S100B), assumed to be a marker as well as a mediator of brain injury. AA is an inhibitor of S100B synthesis and plays a protective role in different models of brain injury, as decreases in S100B expression cause decreases in extracellular S100B. However, S100B mRNA expression, S100B protein content and S100B secretion do not always occur in association; as such, we herein investigated the effect of AA on S100B secretion, using different approaches with three stimulating conditions for S100B secretion, namely, low potassium medium, TNF-α (in hippocampal slices) and LPS exposure (in astrocyte cultures).

View Article and Find Full Text PDF

The understanding of the physiology of astrocytes and their role in brain function progresses continuously. Primary astrocyte culture is an alternative method to study these cells in an isolated system: in their physiologic and pathologic states. Cell lines are often used as an astrocyte model, since they are easier and faster to manipulate and cost less.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2i0ec48r6v1aacaa089pkdaqtj0btdm2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once