Fibroblasts residing in the connective tissues constitute the stem cell niche, particularly in organs such as skin. Although the effect of fibroblasts on stem cell niches and organ aging is an emerging concept, the underlying mechanisms are largely unresolved. We report a mechanism of redox-dependent activation of transcription factor JunB, which, through concomitant upregulation of p16 and repression of insulin growth factor-1 (IGF-1), initiates the installment of fibroblast senescence.
View Article and Find Full Text PDFThe complex interactions between cells of the tumor microenvironment and cancer cells are considered a major determinant of cancer progression and metastasis. Yet, our understanding of the mechanisms of metastatic disease is not sufficient to successfully treat patients with advanced-stage cancer. JUNB is a member of the AP-1 transcription factor family shown to be frequently deregulated in human cancer and associated with invasion and metastasis.
View Article and Find Full Text PDFTranscription factors ensure skin homeostasis via tight regulation of distinct resident stem cells. Here we report that JunB, a member of the AP-1 transcription factor family, regulates epidermal stem cells and sebaceous glands through balancing proliferation and differentiation of progenitors and by suppressing lineage infidelity. JunB deficiency in basal progenitors results in a dermatitis-like syndrome resembling seborrheic dermatitis harboring structurally and functionally impaired sebaceous glands with a globally altered lipid profile.
View Article and Find Full Text PDFUnlabelled: The loss of epithelial cell polarity plays an important role in the development and progression of liver cancer. However, the specific molecular mechanisms supporting tumor initiation and progression are poorly understood. In this study, transcriptome data and immunofluorescence stains of tissue samples derived from hepatocellular carcinoma (HCC) patients revealed that overexpression associated with cytoplasmic localization of the basolateral cell polarity complex protein scribble (Scrib) correlated with poor prognosis of HCC patients.
View Article and Find Full Text PDFJUNB, a subunit of the AP-1 transcription factor complex, mediates gene regulation in response to a plethora of extracellular stimuli. Previously, JUNB was shown to act as a critical positive regulator of blood vessel development and homeostasis as well as a negative regulator of proliferation, inflammation and tumour growth. Here, we demonstrate that the oncogenic miR-182 is a novel JUNB target.
View Article and Find Full Text PDFPrevious studies demonstrated that fibroblast-derived and JUN-dependent soluble factors have a crucial role on keratinocyte proliferation and differentiation during cutaneous wound healing. Furthermore, mice with a deficiency in Jun N-terminal kinases (JNKs) , JNK1 or JNK2, showed impaired skin development and delayed wound closure. To decipher the role of dermal JNK in keratinocyte behavior during these processes, we used a heterologous coculture model combining primary human keratinocytes and murine fibroblasts.
View Article and Find Full Text PDFThe transcription factor AP-1 subunit JUNB has been shown to play a pivotal role in angiogenesis. It positively controls angiogenesis by regulating Vegfa as well as the transcriptional regulator Cbfb and its target Mmp13. In line with these findings, it has been demonstrated that tumor cell-derived JUNB promotes tumor growth and angiogenesis.
View Article and Find Full Text PDFBackground: During pathogenesis of infective endocarditis, Staphylococcus aureus adherence often occurs without identifiable preexisting heart disease. However, molecular mechanisms mediating initial bacterial adhesion to morphologically intact endocardium are largely unknown.
Methods And Results: Perfusion of activated human endothelial cells with fluorescent bacteria under high-shear-rate conditions revealed 95% attachment of the S aureus by ultralarge von Willebrand factor (ULVWF).
Cellular contractility and, thus, the ability to alter cell shape are prerequisites for a number of important biological processes such as cytokinesis, movement, differentiation, and substrate adherence. The contractile capacity of vascular smooth muscle cells (VSMCs) is pivotal for the regulation of vascular tone and thus blood pressure and flow. Here, we report that conditional ablation of the transcriptional regulator Junb results in impaired arterial contractility in vivo and in vitro.
View Article and Find Full Text PDFTumor invasion and metastasis of malignant melanoma have been shown to require proteolytic degradation of the extracellular environment achieved primarily by enzymes of the matrix metalloproteinases (MMP) family. We have earlier shown that increased enzyme activity is localized at the border of tumor cells and the adjacent peritumoral connective tissue, emphasizing the importance of tumor-stroma interactions in the regulation of MMP activity. To confirm the role of stroma-derived MMP-13 in the invasion process, we investigated the invasiveness of melanoma cells upon intradermal injection in mice with complete inactivation of MMP-13.
View Article and Find Full Text PDFIn a study on gene deregulation in ovarian carcinoma we found a mRNA coding for a 350 kDa protein, Drop1, to be downregulated 20- to 180-fold in the majority of ovarian and mammary carcinomas. The mRNA is encoded by a set of exons in the 5' region of the SYNE1 gene. Immunohistochemical staining for Drop1 protein by a specific monoclonal antibody corresponds to the pattern seen for the mRNA.
View Article and Find Full Text PDFMast cells are effector cells of IgE-mediated immune responses frequently found at the vicinity of blood vessels, the margins of diverse tumors and at sites of potential infection and inflammation. Upon IgE-mediated stimulation, mast cells produce and secrete a broad spectrum of cytokines and other inflammatory mediators. Recent work identified JunB, a member of the AP-1 transcription factor family, as critical regulator of basal and induced expression of inflammatory mediators in fibroblasts and T cells.
View Article and Find Full Text PDFStroke therapy aims to save penumbral tissue from apoptosis that is activated in response to the ischemic injury. Since the c-Jun transcription factor plays a crucial role in promoting apoptosis, inhibition of its activation might reduce the final infarct size and thus increase functional outcome. To test this hypothesis we made use of four genetically modified mouse lines influencing the c-Jun pathway at various steps.
View Article and Find Full Text PDFPhysiological conditions like hypoxia or hypoglycemia trigger expression of VEGF, a key regulator of angiogenesis. To elucidate the molecular mechanism underlying the VEGF regulation of hypoglycemia, we investigated the role of AP-1 transcription factor subunits c-Jun and JunB. Using c-jun(-/-) and junB(-/-) mouse embryonic fibroblasts, we demonstrate that both c-Jun and JunB are required for the hypoglycemia-mediated induction of VEGF expression.
View Article and Find Full Text PDFRegulation of vascular endothelial growth factor (VEGF) expression is a complex process involving a plethora of transcriptional regulators. The AP-1 transcription factor is considered as facilitator of hypoxia-induced VEGF expression through interaction with hypoxia-inducible factor (HIF) which plays a major role in mediating the cellular hypoxia response. As yet, both the decisive AP-1 subunit leading to VEGF induction and the molecular mechanism by which this subunit is activated have not been deciphered.
View Article and Find Full Text PDFHeme oxygenase-1 is a highly inducible gene, the product of which catalyzes breakdown of the prooxidant heme. The purpose of this study was to investigate the regulation of the human heme oxygenase-1 gene in renal epithelial cells. DNase I hyper-sensitivity studies identified three distal sites (HS-2, -3, and -4) corresponding to approximately -4.
View Article and Find Full Text PDFThe molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor beta (CBFbeta), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene.
View Article and Find Full Text PDFThe cutaneous response to injury and stress comprises a temporary change in the balance between epidermal proliferation and differentiation as well as an activation of the immune system. Soluble factors play an important role in the regulation of these complex processes by coordinating the intercellular communication between keratinocytes, fibroblasts, and inflammatory cells. In this study, we demonstrate that JunB, a member of the activator protein-1 transcription factor family, is an important regulator of cytokine expression and thus critically involved in the cutaneous response to injury and stress.
View Article and Find Full Text PDFDegradation of the extracellular matrix, which is an indispensable step in tissue remodelling processes such as embryonic development and wound healing of the skin, has been attributed to collagenolytic activity of members of the matrix metalloproteinase family (MMPs). Here, we employed mmp13 knockout mice to elucidate the function of MMP13 in embryonic skin development, skin homeostasis, and cutaneous wound healing. Overall epidermal architecture and dermal composition of non-injured skin were indistinguishable from wild-type mice.
View Article and Find Full Text PDFThe activating receptor NKG2D and its ligands RAE-1 play an important role in the NK, gammadelta+, and CD8+ T cell-mediated immune response to tumors. Expression levels of RAE-1 on target cells have to be tightly controlled to allow immune cell activation against tumors but to avoid destruction of healthy tissues. In this study, we report that cell surface expression of RAE-1epsilon is greatly enhanced on cells lacking JunB, a subunit of the transcription complex AP-1.
View Article and Find Full Text PDFPreeclampsia is a multisystemic pregnancy-associated disease affecting about 3-7% of pregnancies worldwide and is still a principal cause of fetal and maternal morbidity and mortality. To identify potential markers, we have compared gene expression profiles from control and preeclamptic placental tissues taken at various age-matched gestational stages using complementary DNA microarray analysis. Besides previously identified preeclampsia-associated genes, novel differentially expressed transcripts were found.
View Article and Find Full Text PDFThe AP-1 transcription factor is mainly composed of Jun, Fos and ATF protein dimers. It mediates gene regulation in response to a plethora of physiological and pathological stimuli, including cytokines, growth factors, stress signals, bacterial and viral infections, as well as oncogenic stimuli. Studies in genetically modified mice and cells have highlighted a crucial role for AP-1 in a variety of cellular events involved in normal development or neoplastic transformation causing cancer.
View Article and Find Full Text PDFThe assembly and degradation of extracellular matrix (ECM) molecules are crucial processes during bone development. In this study, we show that ECM remodeling is a critical rate-limiting step in endochondral bone formation. Matrix metalloproteinase (MMP) 13 (collagenase 3) is poised to play a crucial role in bone formation and remodeling because of its expression both in terminal hypertrophic chondrocytes in the growth plate and in osteoblasts.
View Article and Find Full Text PDFMesenchymal-epithelial interactions are increasingly considered to be of vital importance for epithelial homeostasis and regeneration. In skin, the transcription factor AP-1 was shown to be critically involved in the communication between keratinocytes and dermal fibroblasts. After skin injury, the release of IL-1 from keratinocytes induces the activity of the AP-1 subunits c-Jun and JunB in fibroblasts leading to a global change in gene expression.
View Article and Find Full Text PDF