Publications by authors named "Marina Scarpa"

To present and characterize a novel method for x-ray computed tomography (xCT) calibration in proton treatment planning, based on proton CT (pCT) measurements on biological phantoms.A pCT apparatus was used to perform direct measurements of 3D stopping power relative to water (SPR) maps on stabilized, biological phantoms. Two single-energy xCT calibration curves-i.

View Article and Find Full Text PDF

The functionalization of inorganic surfaces by organic functional molecules is a viable and promising method towards the realization of novel classes of biosensing devices. The proper comprehension of the chemical properties of the interface, as well as of the number of active binding sites for bioreceptor molecules are characteristics that will determine the interaction of the sensor with the analyte, and thus its final efficiency. We present a new and reliable surface functionalization route based on supersonic molecular beam deposition (SuMBD) using 2,6-naphthalene dicarboxylic acid as a bi-functional molecular linker on the chemically inert silicon nitride surface to further allow for stable and homogeneous attachment of biomolecules.

View Article and Find Full Text PDF

Background: Most symptomatic SARS-CoV-2 infections produce mild to moderate symptoms. Although most patients are managed in the outpatient setting, little is known about the effect of general practitioners' (GP) management strategies on the outcomes of COVID-19 outpatients in Italy.

Objectives: Describe the management of Italian GPs of SARS-CoV-2 infected adult patients and explore whether GP active care and monitoring are associated with reducing hospitalisation and death.

View Article and Find Full Text PDF

The influence of the physical, rheological, and process parameters on the cellulose nanocrystal (CNC) drops before and after external gelation in a CaCl solution was investigated. The dominant role of the CNC's colloidal suspension properties, such as the viscous force, inertial, and surface tension forces in the fluid dynamics was quantitatively evaluated in the formation of drops and jellified beads. The similarity and difference between the behavior of carbohydrate polymers and rod-like crystallites such as CNC were enlightened.

View Article and Find Full Text PDF

The oral delivery of macromolecular therapeutics to the intestinal tract requires novel, robust, and controlled formulations. Here, we report on fabrication by molding of composite hydrogel cylinders made of cellulose nanocrystals (CNCs) and chitosan (Cht) and their performance as delivery vehicles. CNCs provide excellent mechanical and chemical stress resistance, whereas Cht allows scaffold degradation by enzyme digestion.

View Article and Find Full Text PDF

Porous silicon (pSi) microparticles obtained by porosification of crystalline silicon wafers have unique optical properties that, together with biodegradability, biocompatibility and absence of immunogenicity, are fundamental characteristics to candidate them as tracers in optical imaging techniques and as drug carriers. In this work, we focus on the possibility to track down the pSi microparticles also by MRI (magnetic resonance imaging), thus realizing a comprehensive tool for theranostic applications, i.e.

View Article and Find Full Text PDF

With the purpose of designing active patches for photodynamic therapy of melanoma, transparent and soft hydrogel membranes (HMs) have been fabricated by cation-induced gelation of rod-like cellulose nanocrystals (CNCs) bearing negatively charged carboxylic groups. Na , Ca , Mg have been used as cross-linkers of cellulose nanocrystal (CNC). The biosafety of this material and of its precursors has been evaluated in vitro in cell cultures.

View Article and Find Full Text PDF

Aim: To assess the feasibility and effectiveness of a low-complexity, low-cost model of caregiver education in primary care, targeted to reduce hospitalizations of heart failure patients.

Methods: A cluster-randomized, controlled, open trial was proposed to general practitioners, who were invited to identify patients with heart failure, exclusively managed at home and continuously attended by a caregiver. Participating general practitioners were then randomized to: usual treatment; caregiver education (educational session for recognizing early symptoms/signs of heart failure, with recording in a diary of a series of patient parameters, including body weight, blood pressure, heart rate).

View Article and Find Full Text PDF

In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects.

View Article and Find Full Text PDF

A functionalization strategy, consisting of a silylation reaction by acrylic acid followed by diamine coupling, preserves and stabilizes the photoluminescence (PL) of porous silicon (pSi) microparticles suspended in ethanol. We found that under the condition of efficient amine coupling, besides the orange emission typical of the native pSi, an emission band in the blue region appears. The investigation of the interaction between pSi and diamine shows that diamine quenches and shifts the orange band meanwhile it induces an increase of the intensity of the blue one.

View Article and Find Full Text PDF

α-Tocopherol, the main component of vitamin E, traps highly reactive radicals which otherwise might react with lipids present in plasmatic lipoproteins or in cell membranes. The α-tocopheroxyl radicals generated by this process have also a pro-oxidant action which is contrasted by their reaction with ascorbate or by bimolecular self-reaction (dismutation). The kinetics of this bimolecular self-reaction were explored in solution such as ethanol, and in heterogeneous systems such as deoxycholic acid micelles and in human plasma.

View Article and Find Full Text PDF

Porous materials are ideal hosts to fabricate high sensitivity devices. Their large specific area and the possibility to modify the type and the strength of the matrix-analyte interactions allow the realization of sensors with finely tailored characteristics. In this article, we investigate how mass transport across the nanoporous structure influences the response due to the non-specific signal by comparing flow-through versus flow-over geometries.

View Article and Find Full Text PDF

Aqueous solutions of naked nanotubes with Ti concentration up to 10 mM are obtained by hydrothermal synthesis followed by extensive ultrasound treatment. The morphology, surface characteristics, and solution behavior of the solubilized nanotubes are investigated. The time course of the solubilization process driven by ultrasound follows a first-order kinetic law and is mediated by the competition between Na(+) and H(+) for surface sites.

View Article and Find Full Text PDF

Stable aqueous solutions of undecylenic-acid-grafted silicon nanocrystals (Si-nc) were prepared. The time evolution of the photoluminescence properties of these hydrophilic silicon nanocrystals has been followed on different timescales (hours and days). On a short timescale (hours), Si-nc tend to agglomerate while the PL lineshape and intensity are stable.

View Article and Find Full Text PDF

Silicon nanocrystals were made hydrophilic by 10-undecenoic acid grafting and were then coated with sodium deoxycholate, a detergent-like compound belonging to the bile acid class which is crucial for absorption of lipids in the small intestine. The resulting silicon nanocrystals have an average diameter of 3-5 nm, can be dispersed in aqueous solutions and show stable photoluminescence. Coating with non-biological surfactants, which are dangerous for cell safety, was investigated for comparison.

View Article and Find Full Text PDF

The structures of copper amine oxidases from various sources show good similarity, suggesting similar catalytic mechanisms for all members of this enzyme family. However, the optimal substrates for each member differ, depending on the source of the enzyme and its location. The structural factors underlying substrate selectivity still remain to be discovered.

View Article and Find Full Text PDF

Kinetic studies were performed with various alkanamines as "substrate probes" of the properties of the active site of the human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1). We found that the enzyme-substrate recognition step is mainly controlled by apolar interactions and that a "good" substrate has a molecular structure containing a long aliphatic chain and a second positive charge at a distance greater than 12 A from the reactive amino group. In this context, we identified a novel substrate for the human SSAO/VAP-1, 1,12-diaminododecane (DIADO), which is characterised by the highest catalytic efficiency reported to date in comparison to the prototypic substrate benzylamine.

View Article and Find Full Text PDF

This study aims at evaluating the effectiveness of a computerized-based Clinical Record in monitoring hypertension in a Primary Care Setting. Blood pressure (BP) recording increased by 62% to 70% in the years 2004 to 2006. No improvement, however, was noticeable in the achievement of gold-standard targets in BP control (62% in all period).

View Article and Find Full Text PDF

A simple oxygraphic method, for which the theoretical and experimental bases have been recently revised, has been successfully applied to evaluate the peroxyl radical chain-breaking characteristics of some typical food antioxidants in micelle systems, among which is a system that reproduces conditions present in the upper part of the digestive tract, where the absorption and digestion of lipids occur. This method permits one to obtain from a single experimental run the peroxyl radical trapping capacity (PRTC, that is, the number of moles of peroxyl radicals trapped by a given amount of food), the peroxyl radical trapping efficiency (PRTE, that is, the reciprocal of the amount of food that reduces to half the steady-state concentration of peroxyl radicals), and the half-life of the antioxidant ( t(1/2)) when only a small fraction of peroxyl radicals reacts with the antioxidants present in foods. Examples of application of the method to various types of foodstuffs have been reported, assessing the general validity of the method in the simple and fast evaluation of the above-reported fundamental antioxidant characteristics of foods.

View Article and Find Full Text PDF

The inhibition by anthocyanins of the free radical-mediated peroxidation of linoleic acid in a SDS micelle system was studied at pH 7.4 and at 37 degrees C, by oxygraphic and ESR tecniques. The number of peroxyl radicals trapped by anthocyanins and the efficiency of these molecules in the trapping reaction, which are two fundamental aspects of the antioxidant action, were measured and discussed in the light of the molecular structure.

View Article and Find Full Text PDF

Kinetic and spectroscopic studies were carried out to study the role of hydrophobic effect on the activity of bovine serum amine oxidase (BSAO). Increasing the chain length of the substrates (linear aliphatic primary monoamines), the affinity for the active site increases while the catalytic constant decreases in accordance with a relative low value of dielectric constant (about 10) estimated for the microenvironment of BSAO active site using a fluorescent probe sensitive to solvent polarity. The aliphatic chain of 1-aminononane induces a shift in the pK(a) of the product Schiff base, the hydrolysis of which appears to be a rate-determining step of the reaction.

View Article and Find Full Text PDF

In this paper, we report on a method to evaluate the activity of water soluble and H-atom donor antioxidants as peroxyl radical scavengers in a micelle system reproducing the conditions occurring in the upper small intestine in humans, during digestion and absorption of lipids. This method, which overcomes some of the problems of the total radical trapping antioxidant parameter (TRAP) assays, measures the peroxyl radical trapping capacity (n) and the peroxyl radical trapping efficiency IC50(-1) of antioxidants, that is the number "n" of peroxyl radicals trapped by one molecule of the studied antioxidant and the reciprocal of the antioxidant concentration that halves the steady-state concentration of peroxyl radicals, respectively. These two fundamental parameters characterizing the radical chain breaking of many water soluble antioxidants, among which dietary polyphenols, can be obtained with relatively good precision from a single experiment, on the basis of a rigorous treatment of the kinetic data.

View Article and Find Full Text PDF

Eight varieties of Cichorium genus vegetables (five heavily red colored, one red spotted, and two fully green) were investigated for their phenolic content (by HPLC and UV-vis spectrophotometry) and for their antioxidant activity. In particular, the capacity (that is, the amount of trapped peroxyl radicals) and the efficiency (that is, the amount of antioxidant necessary to halve the steady-state concentration of peroxyl radicals) were measured. All of the studied chicories are characterized by the presence of a large amount of hydroxybenzoic and hydroxycinnamic acids, whereas the red color is due to cyanidin glycosides.

View Article and Find Full Text PDF

Forty-one samples of apples (peel plus pulp), obtained from eight cultivars, were examined for concentration of some important phytochemicals and for antioxidant activity expressed as peroxyl radical trapping efficiency. Five major polyphenolic groups plus ascorbate were identified and quantified by HPLC in the apple varieties. Oligomeric and polymeric proanthocyanidins were found to be about two-thirds of total polyphenols.

View Article and Find Full Text PDF
Article Synopsis
  • Bovine serum amine oxidase (BSAO) was crystallized and its 3D structure resolved to 2.37A resolution, revealing a homodimer biological unit made up of two structurally equivalent monomers.
  • Each monomer has three domains similar to other lower species amine oxidases, with minor differences at their active sites, facilitating substrate access and molecular oxygen entry.
  • Comparison with other amine oxidase structures indicates significant differences in cavity architecture and charge distribution, likely affecting substrate specificity.
View Article and Find Full Text PDF