Lymphotoxin α and lymphotoxin β (LTs), TNF superfamily members, are expressed in either soluble (LTα) or membrane-bound (LTαβ or LTαβ) forms. In the pathological context, LT-mediated signaling is known to exacerbate autoimmunity by perpetuating inflammation and promoting the formation of tertiary lymphoid organs. Despite this understanding, the exact roles of LTα and LTβ in the pathogenesis of the murine model of multiple sclerosis, and experimental autoimmune encephalomyelitis (EAE), remain controversial.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a complex autoimmune disease of central nervous system (CNS) characterized by the myelin sheath destruction and compromised nerve signal transmission. Understanding molecular mechanisms driving MS development is critical due to its early onset, chronic course, and therapeutic approaches based only on symptomatic treatment. Cytokines are known to play a pivotal role in the MS pathogenesis with interleukin-6 (IL-6) being one of the key mediators.
View Article and Find Full Text PDFTumor necrosis factor (TNF) is one of many cytokines - protein molecules responsible for communication between the cells of immune system. TNF was discovered and given its grand name because of its striking antitumor effects in experimental systems, but its main physiological functions in the context of whole organism turned out to be completely unrelated to protection against tumors. This short review discusses "man-made" mouse models generated by early genome-editing technologies, which enabled us to establish true functions of TNF in health and certain diseases as well as to unravel potential strategies for improving therapy of TNF-dependent diseases.
View Article and Find Full Text PDFIn recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs.
View Article and Find Full Text PDFis a gram-negative anaerobic bacterium, which represents a part of the commensal human microbiota. Decline in the abundance of among other microbial species in the gut correlates with severe systemic diseases such as diabetes, obesity, intestinal inflammation and colorectal cancer. Due to its mucin-reducing and immunomodulatory properties, the use of probiotics containing sp.
View Article and Find Full Text PDFEur J Immunol
March 2024
COVID-19 is a systemic inflammatory disease initiated by SARS-CoV-2 virus infection. Multiple vaccines against the Wuhan variant of SARS-CoV-2 have been developed including a whole virion beta-propiolactone-inactivated vaccine based on the B.1.
View Article and Find Full Text PDFA highly effective humoral immune response induced by the Sputnik V vaccine was demonstrated in independent studies, as well as in large-scale post-vaccination follow-up studies. However, the shifts in the cell-mediated immunity induced by Sputnik V vaccination are still under investigation. This study was aimed at estimating the impact of Sputnik V on activating and inhibitory receptors, activation and proliferative senescence markers in NK and T lymphocytes.
View Article and Find Full Text PDFThe effectiveness of the antiviral immune response largely depends on the activation of cytotoxic T cells. The heterogeneous group of functionally active T cells expressing the CD56 molecule (NKT-like cells), that combines the properties of T lymphocytes and NK cells, is poorly studied in COVID-19. This work aimed to analyze the activation and differentiation of both circulating NKT-like cells and CD56 T cells during COVID-19 among intensive care unit (ICU) patients, moderate severity (MS) patients, and convalescents.
View Article and Find Full Text PDFThe binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro.
View Article and Find Full Text PDFThe naked mole-rat (NMR) is a unique long-lived rodent which is highly resistant to age-associated disorders and cancer. The immune system of NMR possesses a distinct cellular composition with the prevalence of myeloid cells. Thus, the detailed phenotypical and functional assessment of NMR myeloid cell compartment may uncover novel mechanisms of immunoregulation and healthy aging.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, is accompanied by a dysregulated immune response. In particular, NK cells, involved in the antiviral response, are affected by the infection. This study aimed to investigate circulating NK cells with a focus on their activation, depletion, changes in the surface expression of key receptors, and functional activity during COVID-19, among intensive care unit (ICU) patients, moderately ill patients, and convalescents (CCP).
View Article and Find Full Text PDFPeptides are widely used for the diagnostics, prevention, and therapy of certain human diseases. How useful can they be for the disease caused by the SARS-CoV-2 coronavirus? In this review, we discuss the possibility of using synthetic and recombinant peptides and polypeptides for prevention of COVID-19 via blocking the interaction between the virus and its main receptor ACE2, as well as components of antiviral vaccines, in particular, against new emerging virus variants.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2022
Asthma is one of the most common chronic diseases. In many cases it is preceded by the development of an immune response to allergens such as animal fur, dust, pollens and etc. In human population this disease is heterogeneous, and no selective drugs are available at the moment for some endotypes of asthma.
View Article and Find Full Text PDFCombined anti-cytokine therapy is a promising therapeutic approach for uncontrolled steroid-resistant asthma. In this regard, simultaneous blockade of IL-4 and IL-13 signaling by Dupilumab (anti-IL-4Ra monoclonal antibody) was recently approved for severe eosinophilic asthma. However, no therapeutic options for neutrophilic asthma are currently available.
View Article and Find Full Text PDFBackground: Infectious agents can reprogram or "train" macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type 2 inflammatory conditions such as allergic asthma was not known.
Objective: We sought to decipher macrophage-trained immunity in allergic asthma.
Asthma is a heterogeneous inflammatory disease characterized by airflow obstruction, wheezing, eosinophilia and neutrophilia of the airways. Identification of distinct inflammatory patterns characterizing asthma endotypes led to the development of novel therapeutic approaches. Cytokine or cytokine receptor targeting by therapeutic antibodies, such as anti-IL-4 and anti-IL-5, is now approved for severe asthma treatment.
View Article and Find Full Text PDFTNF is a multifunctional cytokine with its key functions attributed to inflammation, secondary lymphoid tissue organogenesis and immune regulation. However, it is also a physiological regulator of hematopoiesis and is involved in development and homeostatic maintenance of various organs and tissues. Somewhat unexpectedly, the most important practical application of TNF biology in medicine is anti-TNF therapy in several autoimmune diseases.
View Article and Find Full Text PDFTumor necrosis factor (TNF) and lymphotoxin alpha (LTα) are two related cytokines from the TNF superfamily, yet they mediate their functions in soluble and membrane-bound forms via overlapping, as well as distinct, molecular pathways. Their genes are encoded within the major histocompatibility complex class III cluster in close proximity to each other. TNF is involved in host defense, maintenance of lymphoid tissues, regulation of cell death and survival, and antiviral and antibacterial responses.
View Article and Find Full Text PDFBioengineered scaffolds are crucial components in artificial tissue construction. In general, these scaffolds provide inert three-dimensional (3D) surfaces supporting cell growth. However, some scaffolds can affect the phenotype of cultured cells, especially, adherent stromal cells, such as fibroblasts.
View Article and Find Full Text PDFSpatial organization and conformational changes of antibodies may significantly affect their biological functions. We assessed the effect of mutual organization of the two V H domains within bispecific antibodies recognizing human TNF and the surface molecules of murine myeloid cells (F4/80 or CD11b) on TNF retention and inhibition. TNF-neutralizing properties in vitro and in vivo of MYSTI-2 and MYSTI-3 antibodies were compared with new variants with interchanged V H domains and different linker sequences.
View Article and Find Full Text PDFTNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation.
View Article and Find Full Text PDFSystemic TNF neutralization can be used as a therapy for several autoimmune diseases. To evaluate the effects of cell type-restricted TNF blockade, we previously generated bispecific antibodies that can limit TNF secretion by myeloid cells (myeloid cell-specific TNF inhibitors or MYSTIs). In this study several such variable domain (VH) of a camelid heavy-chain only antibody-based TNF inhibitors were compared in relevant experimental models, both in vitro and in vivo.
View Article and Find Full Text PDFIn spite of successful therapeutic neutralization of proinflammatory cytokines in several autoimmune diseases, such therapy is not entirely free of side effects. The main reason relates to the fact that cytokine signaling may have protective components that need to be spared. Several approaches to achieve a less damaging cytokine inhibition are being explored.
View Article and Find Full Text PDFSevere asthma is a heterogeneous inflammatory disease of the airways, which requires treatment with high-dose inhaled corticosteroids or their systemic administration, yet often remains uncontrolled despite this therapy. Over the past decades, research efforts into phenotyping of severe asthma and defining the pathological mechanisms of this disease were successful largely due to the development of appropriate animal models. Recent identification of distinct inflammatory patterns of severe asthma endotypes led to novel treatment approaches, including targeting specific cytokines or their receptors with neutralizing antibodies.
View Article and Find Full Text PDFDespite decades of research, the goal of achieving scarless wound healing remains elusive. One of the approaches, treatment with polymeric microcarriers, was shown to promote tissue regeneration in various models of wound healing. The effects of such an approach are attributed to transferred cells with polymeric microparticles functioning merely as inert scaffolds.
View Article and Find Full Text PDF