Publications by authors named "Marina S Defferrari"

Endocytic membrane traffic controls the access of myriad cell surface proteins to the extracellular milieu, and thus gates nutrient uptake, ion homeostasis, signaling, adhesion and migration. Coordination of the regulation of endocytic membrane traffic with a cell's metabolic needs represents an important facet of maintenance of homeostasis under variable conditions of nutrient availability and metabolic demand. Many studies have revealed intimate regulation of endocytic membrane traffic by metabolic cues, from the specific control of certain receptors or transporters, to broader adaptation or remodeling of the endocytic membrane network.

View Article and Find Full Text PDF

The insulin signaling pathway is a modulator of metabolism in insects and can regulate functions associated with growth and development, as well as lipid and carbohydrate balance. We have previously reported the presence of an insulin-like peptide and an insulin-like growth factor in , which are involved in the homeostasis of lipids and carbohydrates in post-feeding and non-feeding periods. In the present study, we have characterized the first insulin receptor (IR) to be discovered in , Rhopr-IR, and investigated its intracellular signaling cascade and its role in nutrient control.

View Article and Find Full Text PDF

DmCatD, a cathepsin D-like peptidase of the hematophagous insect Dipetalogaster maxima, is synthesized by the fat body and the ovary and functions as yolk protein precursor. Functionally, DmCatD is involved in vitellin proteolysis. In this work, we purified and sequenced DmCatD, performed bioinformatic analyses and investigated the events involved in its targeting and storage in developing oocytes.

View Article and Find Full Text PDF

Growth of organisms is modulated by the availability of nutrients and energy, and is mostly regulated by insulin-like growth factors (IGFs) through the insulin signaling system. In insects, IGFs produced by the fat body induce cell division during the molt cycle, regulate adult body size, and have metabolic effects. Here, we describe an IGF from the hematophagous hemipteran and show its activity in regulating growth and metabolism in the post-feeding period during the fifth, and last, nymphal instar.

View Article and Find Full Text PDF

Insulin-like peptides (ILPs) are functional analogs of insulin and have been identified in many insect species. The insulin cell signaling pathway is a conserved regulator of metabolism, and in insects, as well as in other animals, can modulate physiological functions associated with the metabolism of lipids and carbohydrates. In the present study, we have identified the first ILP from the Rhodnius prolixus genome (termed Rhopr-ILP) and investigated its involvement in energy metabolism of unfed and recently fed fifth instars.

View Article and Find Full Text PDF

Background: Triatoma infestans is the main vector of Chagas'disease in Southern Cone countries. In triatomines, symptoms suggesting neurotoxicity were observed after treatment with Jaburetox (Jbtx), the entomotoxic peptide obtained from jackbean urease. Here, we study its effect in the central nervous system (CNS) of this species.

View Article and Find Full Text PDF

Background: Ureases are metalloenzymes involved in defense mechanisms in plants. The insecticidal activity of Canavalia ensiformis (jack bean) ureases relies partially on an internal 10kDa peptide generated by enzymatic hydrolysis of the protein within susceptible insects. A recombinant version of this peptide, jaburetox, exhibits insecticidal, antifungal and membrane-disruptive properties.

View Article and Find Full Text PDF

The use of naturally occurring plant-derived compounds for controlling insect pests remains an attractive alternative to potentially dangerous synthetic chemical compounds. One prospective plant-based compound, isoforms of the so-called jack bean urease (JBU) from the jack bean, Canavalia ensiformis, as well a derived peptide, Jaburetox-2Ec, have insecticidal effects on an array of insect species. In the Chagas' disease vector, Rhodnius prolixus, some of the physiological effects attributed to these urease isoforms include inhibition of serotonin (5-HT)-stimulated fluid secretion by the Malpighian tubules (MTs).

View Article and Find Full Text PDF

In this work, we have explored the biochemical changes characterizing the transition from vitellogenesis to follicular atresia, employing the hematophagous insect vector Dipetalogaster maxima as a model. Standardized insect rearing conditions were established to induce a gradual follicular degeneration stage by depriving females of blood meal during post-vitellogenesis. For the studies, hemolymph and ovaries were sampled at representative days of pre-vitellogenesis, vitellogenesis and early and late follicular atresia.

View Article and Find Full Text PDF

Jackbean (Canavalia ensiformis) ureases are entomotoxic upon the release of internal peptides by insect's digestive enzymes. Here we studied the digestive peptidases of Oncopeltus fasciatus (milkweed bug) and its susceptibility to jackbean urease (JBU). O.

View Article and Find Full Text PDF

Canavalia ensiformis ureases are toxic to insects of different orders. The entomotoxicity of urease is due to a 10 kDa internal peptide released by proteinases in the insect digestive tract. We previously observed that, given orally, urease is toxic to nymphs of Dysdercus peruvianus, but does not affect adults.

View Article and Find Full Text PDF