The mouse local lymph node assay (LLNA) has become the preferred test for evaluating the dermal sensitization potential of chemicals and requirements are now emerging for its use in the evaluation of their formulated products, especially in the European Union. However, despite its widespread use and extensive validation, the use of this assay for directly testing mixtures and formulated products has been questioned, which could lead to repeat testing using multiple animal models. As pesticide formulations are typically a specific complex blend of chemicals for use as aqueous-based dilutions, traditional vehicles prescribed for the LLNA may change the properties of these formulations leading to inaccurate test results and hazard identification.
View Article and Find Full Text PDFECVAM sponsored a formal validation study on three in vitro tests for skin irritation, of which two employ reconstituted human epidermis models (EPISKIN, EpiDerm), and one, the skin integrity function test (SIFT), employs ex vivo mouse skin. The goal of the study was to assess whether the in vitro tests would correctly predict in vivo classifications according to the EU classification scheme, "R38" and "no label" (i.e.
View Article and Find Full Text PDFBased on two successfully completed ECVAM validation studies for in vitro skin corrosion testing of chemicals, the National Co-ordinators of OECD Test Guideline Programme endorsed in 2002 two new test guidelines: TG 430 'Transcutaneous Electrical Resistance assay' and TG 431 'Human Skin Model Test'. To allow all suitable in vitro human reconstructed (dermal or epidermal) models to be used for skin corrosion testing, the OECD TG 431 defines general and functional conditions that the model must meet before it will be routinely used for skin corrosion testing. In addition, the guideline requires correct prediction of 12 reference chemicals and assessment of intra- and inter-laboratory variability.
View Article and Find Full Text PDF