Background And Aims: Intra- and transgenerational plasticity may provide substantial phenotypic variation to cope with environmental change. Since assessing the unique contribution of the maternal environment to the offspring phenotype is challenging in perennial, outcrossing plants, little is known about the evolutionary and ecological implications of transgenerational plasticity and its persistence over the life cycle in these species. We evaluated how intra- and transgenerational plasticity interplay to shape the adaptive responses to drought in two perennial Mediterranean shrubs.
View Article and Find Full Text PDFTransgenerational plasticity is a form of non-genetic inheritance that can reduce or enhance offspring fitness depending on parental stress. Yet, the adaptive value of such parental environmental effects and whether their expression varies among populations remain largely unknown. We used self-fertilized lines from climatically distinct populations of the crop wild relative In the parental generation, full-siblings were grown in two contrasting watering environments.
View Article and Find Full Text PDFUnderstanding constraints to phenotypic plasticity is key given its role on the response of organisms to environmental change. It has been suggested that phenotypic integration, the structure of trait covariation, could limit trait plasticity. However, the relationship between plasticity and integration is far from resolved.
View Article and Find Full Text PDFPremise: Gypsum soils in the Mediterranean Basin house large numbers of edaphic specialists that are adapted to stressful environments. The evolutionary history and standing genetic variation of these taxa have been influenced by the geological and paleoclimatic complexity of this area and the long-standing effect of human activities. However, little is known about the origin of Mediterranean gypsophiles and the factors affecting their genetic diversity and population structure.
View Article and Find Full Text PDFBackground And Aims: Plants experiencing contrasting environmental conditions may accommodate such heterogeneity by expressing phenotypic plasticity, evolving local adaptation or a combination of both. We investigated patterns of genetic differentiation and plasticity in response to drought in populations of the gypsum specialist Lepidium subulatum.
Methods: We created an outdoor common garden with rain exclusion structures using 60 maternal progenies from four distinct populations that substantially differ in climatic conditions.