A review of different modeling techniques, specifically in the framework of carbon-based nanomaterials (CNMs, including nanoparticles such as graphene and carbon nanotubes-CNTs) and the composites and devices that can be derived from them, is presented. The article emphasizes that the overall performance of these materials depends on mechanisms that operate across different time and spatial scales, requiring tailored approaches based on the material type, size, internal structure/configuration, and the specific properties of interest. Far from attempting to cover the entire spectrum of models, this review examines a wide range of analysis and simulation techniques, highlighting their potential use, some of their weaknesses and strengths, and presenting the latest developments and some application examples.
View Article and Find Full Text PDFNumerical prediction of material properties is attracting the attention of the scientific community and industry because of its usefulness in the design process. In the fields of fluid dynamics and microfluidics, several simulation methods have been proposed and adopted to evaluate the properties of surfaces and material interfaces, thanks to the increasing computational power available. However, despite the efforts made, a general and standardized methodology for implementing such methods is still lacking, thus requiring a trial-and-error approach for each new problem, making them difficult to implement and creating a bottleneck at the initial stage of surface design.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by expansion of CTG microsatellite repeats within DMPK. The most severe form, congenital myotonic dystrophy (CDM), has symptom onset at birth due to large intergenerational repeat expansions. Despite a common mutation, CDM individuals present with a distinct clinical phenotype and absence of common DM1 symptoms.
View Article and Find Full Text PDFPediatr Infect Dis J
July 2020
Background: The urinary tract was once thought to be sterile, and little is known about the urinary microbiome in children. This study aimed to examine the urinary microbiome of young children across demographic and clinical factors.
Methods: Children <48 months, undergoing a urinary catheterization for clinical purposes in the Pediatric Emergency Department were recruited and urine samples collected.
The meconium microbiome may provide insight into intrauterine and peripartum exposures and the very earliest intestinal pioneering microbes. Prenatal antibiotics have been associated with later obesity in children, which is thought to be driven by microbiome dependent mechanisms. However, there is little data regarding associations of prenatal or peripartum antibiotic exposure, with or without cesarean section (CS), with the features of the meconium microbiome.
View Article and Find Full Text PDFBackground: Preliminary data suggest that the urinary microbiome may play a role in bladder cancer. Information regarding the most suitable method of collecting urine specimens is needed for the large population studies needed to address this. To compare microbiome metrics resulting from 16S ribosomal RNA gene sequencing between midstream, voided specimens and those obtained at cystoscopy.
View Article and Find Full Text PDFParenteral nutrition-associated cholestasis (PNAC) causes serious morbidity in the neonatal intensive care unit. Infection with gut-associated bacteria is associated with cholestasis, but the role of intestinal microbiota in PNAC is poorly understood. We examined the composition of stool microbiota from premature twins discordant for PNAC as a strategy to reduce confounding from variables associated with both microbiota and cholestasis.
View Article and Find Full Text PDFBackground: Effective methods are needed to collect fecal samples from children for large-scale microbiota studies. Stool collected on fecal occult blood test (FOBT) cards that can be mailed provides an effective solution; however, the quality of sequencing resulting from this method is unknown. The aim of this study is to compare microbiota metrics of 16S ribosomal RNA (rRNA) gene sequencing from stool and meconium collected on FOBT cards with stool collected in an Eppendorf tube (ET) under different conditions.
View Article and Find Full Text PDFOur case describes the serial microbiome changes in twins discordant for necrotizing enterocolitis (NEC), who shared similar intrauterine and early environmental exposures. The key findings were that the 2 neonates had distinctly different microbiome compositions from the first stool samples collected. Also, in the twin who developed NEC there was a decrease in bacterial diversity and an increase in Proteobacteria a week before developing any clinical symptoms, suggesting an early role of the intestinal microbiome in the development of NEC.
View Article and Find Full Text PDF