Publications by authors named "Marina Prisciandaro"

The present work aims to describe and review the available technologies and the recent advancements in treating industrial wastewater containing tetramethylammonium hydroxide (TMAH). It is a quaternary ammonium salt and widely used in the microelectronics industry; this kind of company produces large quantities of wastewater containing TMAH. The exhausted solutions must be treated appropriately since TMAH is corrosive, toxic to human health, and ecotoxic.

View Article and Find Full Text PDF

Biodiesel production calls for innovative solutions to turn into a competitive process with a reduced environmental impact. One of the process bottlenecks stands in the immiscibility of oil and alcohol as raw materials, so mixing process largely impacts the overall process cost. This process step, if carried out by using hydrodynamic cavitation, has the possibility to become a benchmark for large scale applications.

View Article and Find Full Text PDF

Hydrometallurgical processes for the treatment and recovery of metals from waste electrical and electronic equipment produce wastewaters containing heavy metals. These residual solutions cannot be discharged into the sewer without an appropriate treatment. Specific wastewater treatments integrated with the hydrometallurgical processes ensure a sustainable recycling loops of the electrical wastes to maximize the metals recovery and minimize the amount of wastes and wastewaters produced.

View Article and Find Full Text PDF

In this paper, the efficiency of micellar enhanced ultrafiltration technique (MEUF) was tested for the removal of yttrium and zinc ions from synthetic industrial liquid wastes. UF membranes (monotubular ceramic membranes of 210 kDa and 1 kDa molecular weight cut-off) were used with adding an anionic surfactant, sodium dodecyl sulfate (SDS). A two - level full factorial design was performed in order to evaluate the effect of molecular weight cut-off, sodium dodecyl sulfate concentration and pressure on the permeate flux and rejection yields.

View Article and Find Full Text PDF

In this paper, the six more poisonous species among all congeners of dioxin group are taken into account, and the P-T diagram for each of them is developed. Starting from the knowledge of vapour tensions and thermodynamic parameters, the theoretical adsorption isotherms are calculated according to the Langmuir's model. In particular, the Langmuir isotherm parameters (K and w) have been validated through the estimation of the adsorption heat (ΔH), which varies in the range 20-24kJ/mol, in agreement with literature values.

View Article and Find Full Text PDF

The advanced treatment of polluted liquid streams containing traces of pharmaceutical compounds is a major issue, since more and more effluents from pharma labs and wastewaters containing the excretions of medically treated humans and animals are discharged in the conventional wastewater treatment plants without previous effective treatments. Ibuprofen is a widely used non-steroidal anti-inflammatory drug (NSAID), which explains why it is found in wastewaters so often. In this paper, the removal of IBP from simulated water streams was investigated by using a lab-scale experimental device, consisting of a batch reactor equipped with a lamp emitting monochromatic UV light at a fixed wavelength (254 nm) and various intensities.

View Article and Find Full Text PDF

Ibuprofen (IBP) is an anti-inflammatory drug whose residues can be found worldwide in natural water bodies resulting in harmful effects to aquatic species even at low concentrations. This paper deals with the degradation of IBP in water by hydrodynamic cavitation in a convergent-divergent nozzle. Over 60% of ibuprofen was degraded in 60 min with an electrical energy per order (EEO) of 10.

View Article and Find Full Text PDF

The Hg(0) vapor adsorption experimental results on a novel sorbent obtained by impregnating a commercially available activated carbon (Darco G60 from BDH) with silver nitrate were reported. The study was performed by using a fundamental approach, in an apparatus at laboratory scale in which a synthetic flue gas, formed by Hg(0) vapors in a nitrogen gas stream, at a given temperature and mercury concentration, was flowed through a fixed bed of adsorbent material. Breakthrough curves and adsorption isotherms were obtained for bed temperatures of 90, 120 and 150 degrees C and for Hg(0) concentrations in the gas varying in the range of 0.

View Article and Find Full Text PDF

This paper presents an experimental study of calcium bisulfite oxidation, a key step in the wet limestone-gypsum flue gas desulfurization (FGD) process, in the presence of catalysts (e.g., cobalt ions and a mixture of ferrous and cobalt ions).

View Article and Find Full Text PDF

In the present paper, the modeling of a dual-purpose plant for the production of electrical and thermal energy from the heat treatment of solid wastes is presented. Particularly, the process has been modeled by using the Aspen Plus Shell, with the aim of performing a study about the applicability of this software in the simulation of a solid waste incineration process, which involves complex gas-solid reactions where the solids are referred to as "non-conventional". The model is developed to analyze and quantify the expected benefits associated with refuse derived fuel (RDF) thermal utilization; thus attention is focused on the performance of the energy recovery section.

View Article and Find Full Text PDF