Background: Ixodid ticks are important vectors of a wide variety of viral, bacterial and protozoan pathogens of medical and veterinary importance. Although several studies have elucidated tick responses to bacteria, little is known about the tick response to viruses. To gain insight into the response of tick cells to flavivirus infection, the transcriptomes and proteomes of two Ixodes spp cell lines infected with the flavivirus tick-borne encephalitis virus (TBEV) were analysed.
View Article and Find Full Text PDFAnaplasma marginale is an economically important tick-borne pathogen of cattle that causes bovine anaplasmosis. A wide range of geographic strains of A. marginale have been isolated from cattle, several of which have been characterized using genomics and proteomics.
View Article and Find Full Text PDFTicks are blood-feeding arthropod ectoparasites of wild and domestic animals that transmit disease-causing pathogens to humans and animals worldwide and a good model for the characterization of tick-host-pathogen interactions. Tick-host-pathogen interactions consist of dynamic processes involving genetic traits of hosts, pathogens, and ticks that mediate their development and survival. Proteomics provides information on the protein content of cells and tissues that may differ from results at the transcriptomics level and may be relevant for basic biological studies and vaccine antigen discovery.
View Article and Find Full Text PDFUnlabelled: Ticks transmit zoonotic pathogens worldwide. Nevertheless, very little information is available on their genome, transcriptome and proteome. Herein, we characterized the proteome of Amblyomma americanum adults and nymphs because of their role in pathogen transmission and compared the proteome of A.
View Article and Find Full Text PDFCattle ticks, Rhipicephalus (Boophilus) microplus, are a serious threat to animal health and production. Some ticks feed on a single host species while others such as R. microplus infest multiple hosts.
View Article and Find Full Text PDFInfestations with cattle ticks, Rhipicephalus (Boophilus) microplus and Rhipicephalus annulatus, economically impact cattle production in tropical and subtropical regions of the world. Vaccines containing the recombinant R. microplus BM86 gut antigen were developed and commercialized to induce an immunological protection in cattle against tick infestations.
View Article and Find Full Text PDFTicks are vectors of pathogens that affect human and animal health worldwide. Ticks and the pathogens they transmit have co-evolved molecular interactions involving genetic traits of both the tick and the pathogen that mediate their development and survival. Proteomics and genomics studies of infected ticks are required to understand tick-pathogen interactions and identify potential vaccine antigens to control tick infestations and pathogen transmission.
View Article and Find Full Text PDF