Mucus is a dynamic biological hydrogel, composed primarily of the glycoprotein mucin, exhibits unique biophysical properties and forms a barrier protecting cells against a broad-spectrum of viruses. Here, this work develops a polyglycerol sulfate-based dendronized mucin-inspired copolymer (MICP-1) with ≈10% repeating units of activated disulfide as cross-linking sites. Cryo-electron microscopy (Cryo-EM) analysis of MICP-1 reveals an elongated single-chain fiber morphology.
View Article and Find Full Text PDFMethods for creating various 3D morphologies of composites based on chitosan and copper nanoparticles stabilized by it in carbonic acid solutions formed under high pressure of saturating CO were developed. This work includes a comprehensive analysis of the regularities of copper nanoparticles stabilization and reduction with chitosan, studied by IR and UV-vis spectroscopies, XPS, TEM and rheology. Chitosan can partially reduce Cu ions in aqueous solutions to small-sized, spherical copper nanoparticles with a low degree of polydispersity; the process is accompanied by the formation of an elastic polymer hydrogel.
View Article and Find Full Text PDFNew functional medical materials with antibacterial activity based on biocompatible bacterial cellulose (BC) and Ag nanoparticles (Ag NPs) were obtained. Bacterial cellulose films were prepared by stationary liquid-phase cultivation of the strain GH-1/2008 in Hestrin-Schramm medium with glucose as a carbon source. To functionalize the surface and immobilize Ag NPs deposited by magnetron sputtering, BC films were treated with low-pressure oxygen-nitrogen plasma.
View Article and Find Full Text PDFThe functionalization of the bacterial cellulose (BC) surface with a chitosan biopolymer to expand the areas of possible applications of the modified BC is an important scientific task. The creation of such composites in the carbonic acid solutions that were performed in this work has several advantages in terms of being biocompatible and eco-friendly. Quantitative analysis of chitosan content in the composite was conducted by tritium-labeled chitosan radioactivity detection method and this showed three times increased chitosan loading.
View Article and Find Full Text PDFIn this paper, we perform a systematic analysis of the structural organization of bacterial cellulose (BC). We report four types of organization of the BC mass, produced by Gluconacetobacter hansenii that occur depending on cultivation conditions. Two of those, particularly, plywood type one and layers of micro-sized tubes were observed and described for the first time.
View Article and Find Full Text PDFChitosan-based hydrogels with stabilized Ag nanoparticles were synthesized in the aqueous solutions of carbonic acid, i.e. water saturated with CO under pressure in hundreds of bars.
View Article and Find Full Text PDFIt was found out that block copolymers of polystyrene and poly(4-vinylpyridine) with comparable lengths of blocks could be dissolved in a high-pressure reactor containing water phase saturated with carbon dioxide under high pressure at room temperature. This rather effective dissolution occurs due to a protonation of P4VP nitrogen-containing groups together with a plasticization of the polymer material to be dissolved by a compressed dense CO being contained in the autoclave. The selected block copolymers form rather monodispersed micelles with well-defined and reproducible spherical geometry.
View Article and Find Full Text PDF