Background: Spinal cord injury (SCI) and the consecutive devastating neurological sequelae have an enormous individual and economic impact. Implantation of functionalized hydrogels is a promising approach, because they can serve as a matrix for the regenerating tissue, carry and release bioactive molecules and various cell types. We already demonstrated that non-functionalized soft alginate hydrogel supported axonal outgrowth and protected neurons against oxidative stress in vitro.
View Article and Find Full Text PDFMicroglial cells invade the brain as amoeboid precursors and acquire a highly ramified morphology in the postnatal brain. Microglia express all essential purinergic elements such as receptors, nucleoside transporters and ecto-enzymes, including CD39 (NTPDase1) and CD73 (5'-nucleotidase), which sequentially degrade extracellular ATP to adenosine. Here, we show that constitutive deletion of CD39 and CD73 or both caused an inhibition of the microglia ramified phenotype in the brain with a reduction in the length of processes, branching frequency and number of intersections with Sholl spheres.
View Article and Find Full Text PDFMicroglia are innate immune cells of the brain. We have studied a subpopulation of microglia, called satellite microglia. This cell type is defined by a close morphological soma-to-soma association with a neuron, indicative of a direct functional interaction.
View Article and Find Full Text PDFAdult neurogenesis in the hippocampus is impaired in schizophrenic patients and in an animal model of schizophrenia. Amongst a plethora of regulators, the immune system has been shown repeatedly to strongly modulate neurogenesis under physiological and pathological conditions. It is well accepted, that schizophrenic patients have an aberrant peripheral immune status, which is also reflected in the animal model.
View Article and Find Full Text PDFSoft alginate hydrogels support robust neurite outgrowth, but their rapid disintegration in solutions of high ionic strength restricts them from long-term in vivo applications. Aiming to enhance the mechanical stability of soft alginate hydrogels, we investigated how changes in pH and ionic strength during gelation influence the swelling, stiffness, and disintegration of a three-dimensional (3D) alginate matrix and its ability to support neurite outgrowth. Hydrogels were generated from dry alginate layers through ionic crosslinks with Ca(2+) (≤ 10 mM) in solutions of low or high ionic strength and at pH 5.
View Article and Find Full Text PDFNeural tissue engineering focuses on development of biomaterials that could support regeneration of neurons after trauma as well as injury caused by degenerative diseases. In this work we describe novel soft alginate hydrogels, which provide an adhesive matrix for rat and human neurons and facilitate neurite outgrowth. Only soft hydrogels, prepared with sub-stoichiometric concentrations of Ca²⁺, Ba²⁺, and Sr²⁺ cations by cross-linking with no >10% of all potentially available gelation sites in alginate, facilitated rapid and abundant neurite outgrowth in primary neuronal monolayer cultures, neural spheroids, and neurons derived from rat and human neural stem cells.
View Article and Find Full Text PDFRecent data have suggested the existence of direct signaling pathways between glial cells and neurons. Here we report the coexistence of distinct types of cells expressing astrocyte-specific markers within the hippocampus that display diverse morphological, molecular, and functional profiles. Usage of transgenic mice with GFAP promoter-controlled enhanced green fluorescent protein (EGFP) expression allowed the identification of astroglial cells after fresh isolation or in brain slices.
View Article and Find Full Text PDFAstrocyte motility plays an important role in the response of the brain to injury and during regeneration. We used two in vitro assays, a wound-healing model and a chemotaxis assay, to study mechanisms that control astrocyte motility. Ryanodine receptors (RyR), intracellular calcium-release channels, modulate intracellular Ca2+ levels, and also motility: 1) blocking RyR with antagonizing concentration of ryanodine (200 microM) strongly attenuated motility and 2) motility of astrocytes cultured from homozygous RyR type 3 knockout mice was impaired strongly compared with wild-type.
View Article and Find Full Text PDF