Publications by authors named "Marina Mapelli"

Aging is accompanied by the progressive decline in tissue regenerative capacity and functions of resident stem cells (SCs). Underlying mechanisms, however, remain unclear. Here we show that, during chronological aging, self-renewing mitoses of mammary SCs (MaSCs) are preferentially asymmetric and that their progeny divides less frequently, leading to decreased number of MaSCs and reduced regenerative potential.

View Article and Find Full Text PDF

Microtubules are key components of the eukaryotic cytoskeleton with essential roles in cell division, intercellular transport, cell morphology, motility, and signal transduction. They are composed of protofilaments of heterodimers of α-tubulin and β-tubulin organized as rigid hollow cylinders that can assemble into large and dynamic intracellular structures. Consistent with their involvement in core cellular processes, affecting microtubule assembly results in cytotoxicity and cell death.

View Article and Find Full Text PDF

In multicellular organisms, epithelial cells are key elements of tissue organization. In developing tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs, that ensure the correct organ formation and functioning. In these processes, mitotic rates and division orientation are crucial in regulating the velocity and the timing of the forming tissue.

View Article and Find Full Text PDF

The correlation between immune responses and protection from SARS-CoV-2 infections and its duration remains unclear. We performed a sanitary surveillance at the European Institute of Oncology (IEO) in Milan over a 17 months period. Pre-vaccination, in 1,493 participants, we scored 266 infections (17.

View Article and Find Full Text PDF

Although the classic symptoms of Huntington's disease (HD) manifest in adulthood, neural progenitor cell behavior is already abnormal by 13 weeks' gestation. To determine how these developmental defects evolve, we turned to cell and mouse models. We found that layer II/III neurons that normally connect the hemispheres are limited in their growth in HD by microtubule bundling defects within the axonal growth cone, so that fewer axons cross the corpus callosum.

View Article and Find Full Text PDF

In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gα-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells.

View Article and Find Full Text PDF

The Drosophila tumour necrosis factor (TNF) ligand-receptor system consists of a unique ligand, Eiger (Egr), and two receptors, Grindelwald (Grnd) and Wengen (Wgn), and therefore provides a simple system for exploring the interplay between ligand and receptors, and the requirement for Grnd and Wgn in TNF/Egr-mediated processes. Here, we report the crystallographic structure of the extracellular domain (ECD) of Grnd in complex with Egr, a high-affinity hetero-hexameric assembly reminiscent of human TNF:TNFR complexes. We show that ectopic expression of Egr results in internalisation of Egr:Grnd complexes in vesicles, a step preceding and strictly required for Egr-induced apoptosis.

View Article and Find Full Text PDF

Eukaryotic transcription factors recognize specific DNA sequence motifs, but are also endowed with generic, non-specific DNA-binding activity. How these binding modes are integrated to determine select transcriptional outputs remains unresolved. We addressed this question by site-directed mutagenesis of the Myc transcription factor.

View Article and Find Full Text PDF

Mitotic spindle orientation is a crucial process that defines the axis of cell division, contributing to daughter cell positioning and fate, and hence to tissue morphogenesis and homeostasis. The trimeric NuMA/LGN/Gαi complex, the major determinant of spindle orientation, exerts pulling forces on the spindle poles by anchoring astral microtubules (MTs) and dynein motors to the cell cortex. Mitotic kinases contribute to correct spindle orientation by regulating nuclear mitotic apparatus protein (NuMA) localization, among which the Aurora-A centrosomal kinase regulates NuMA targeting to the cell cortex in metaphase.

View Article and Find Full Text PDF

Background And Aims: A similar course of COVID-19 in patients with inflammatory bowel diseases [IBD] and in the general population has been reported. However, disease prevalence in IBD patients is presently unknown. In this prospective observational study, we aimed at determining SARS-CoV2 infection prevalence in IBD patients treated with biologic therapy.

View Article and Find Full Text PDF

Although antibody response to SARS-CoV-2 can be detected early during the infection, several outstanding questions remain to be addressed regarding the magnitude and persistence of antibody titer against different viral proteins and their correlation with the strength of the immune response. An ELISA assay has been developed by expressing and purifying the recombinant SARS-CoV-2 Spike Receptor Binding Domain (RBD), Soluble Ectodomain (Spike), and full length Nucleocapsid protein (N). Sera from healthcare workers affected by non-severe COVID-19 were longitudinally collected over four weeks, and compared to sera from patients hospitalized in Intensive Care Units (ICU) and SARS-CoV-2-negative subjects for the presence of IgM, IgG and IgA antibodies as well as soluble pro-inflammatory mediators in the sera.

View Article and Find Full Text PDF

Mitotic progression is orchestrated by the microtubule-based motor dynein, which sustains all mitotic spindle functions. During cell division, cytoplasmic dynein acts with the high-molecular-weight complex dynactin and nuclear mitotic apparatus (NuMA) to organize and position the spindle. Here, we analyze the interaction interface between NuMA and the light intermediate chain (LIC) of eukaryotic dynein.

View Article and Find Full Text PDF

Even though immunotherapy has radically changed the search for anticancer therapies, there are still many different pathways that are open to intervention with traditional small molecules. To expand our investigation in the anticancer field, we report here a new series of compounds in which our previous pyrazole and imidazopyrazole scaffolds are linked to a differently decorated phenyl ring through an acylhydrazone linker. Preliminary tests on the library were performed at the National Cancer Institute (USA) against the full NCI 60 cell panel.

View Article and Find Full Text PDF

Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them.

View Article and Find Full Text PDF

Cortical force generators connect epithelial polarity sites with astral microtubules, allowing dynein movement to orient the mitotic spindle as astral microtubules depolymerize. Complexes of the LGN and NuMA proteins, fundamental components of force generators, are recruited to the cortex by Gαi-subunits of heterotrimeric G-proteins. They associate with dynein/dynactin and activate the motor activity pulling on astral microtubules.

View Article and Find Full Text PDF

Asymmetric cell divisions balance stem cell proliferation and differentiation to sustain tissue morphogenesis and homeostasis. During asymmetric divisions, fate determinants and niche contacts segregate unequally between daughters, but little is known on how this is achieved mechanistically. In Drosophila neuroblasts and murine mammary stem cells, the association of the spindle orientation protein LGN with the stem cell adaptor Inscuteable has been connected to asymmetry.

View Article and Find Full Text PDF

Numb functions as an oncosuppressor by inhibiting Notch signaling and stabilizing p53. This latter effect depends on the interaction of Numb with Mdm2, the E3 ligase that ubiquitinates p53 and commits it to degradation. In breast cancer (BC), loss of Numb results in a reduction of p53-mediated responses including sensitivity to genotoxic drugs and maintenance of homeostasis in the stem cell compartment.

View Article and Find Full Text PDF

In many cell types, mitotic spindle orientation relies on the canonical "LGN complex" composed of Pins/LGN, Mud/NuMA, and Gα subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3.

View Article and Find Full Text PDF

Stem cells have the remarkable ability to undergo proliferative symmetric divisions and self-renewing asymmetric divisions. Balancing of the two modes of division sustains tissue morphogenesis and homeostasis. Asymmetric divisions of Drosophila neuroblasts (NBs) and sensory organ precursor (SOP) cells served as prototypes to learn what we consider now principles of asymmetric mitoses.

View Article and Find Full Text PDF

Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown.

View Article and Find Full Text PDF

Asymmetric stem-cell divisions are fundamental for morphogenesis and tissue homeostasis. They rely on the coordination between cortical polarity and the orientation of the mitotic spindle, which is orchestrated by microtubule pulling motors recruited at the cortex by NuMA-LGN-Gαi complexes. LGN has emerged as a central component of the spindle-orientation pathway that is conserved throughout species.

View Article and Find Full Text PDF

Spindle positioning is essential for tissue morphogenesis and homeostasis. The signaling network synchronizing spindle placement with mitotic progression relies on timely recruitment at the cell cortex of NuMA:LGN:Gαi complexes, in which NuMA acts as a receptor for the microtubule motor Dynein. To study the implication of Aurora-A in spindle orientation, we developed protocols for the partial inhibition of its activity.

View Article and Find Full Text PDF

Polarized epithelia form by oriented cell divisions in which the mitotic spindle aligns parallel to the epithelial plane. To orient the mitotic spindle, cortical cues trigger the recruitment of NuMA-dynein-based motors, which pull on astral microtubules via the protein LGN. We demonstrate that the junctional protein Afadin is required for spindle orientation and correct epithelial morphogenesis of Caco-2 cysts.

View Article and Find Full Text PDF