Publications by authors named "Marina Lusic"

HIV-1 encounters the hierarchically organized host chromatin to stably integrate and persist in anatomically distinct latent reservoirs. The contribution of genome organization in HIV-1 infection has been largely understudied across different HIV-1 targets. Here, we determine HIV-1 integration sites (ISs), associate them with chromatin and expression signatures at different genomic scales in a microglia cell model, and profile them together with the primary T cell reservoir.

View Article and Find Full Text PDF

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication.

View Article and Find Full Text PDF

HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect.

View Article and Find Full Text PDF

HIV-1 replication commences inside the cone-shaped viral capsid, but timing, localization, and mechanism of uncoating are under debate. We adapted a strategy to visualize individual reverse-transcribed HIV-1 cDNA molecules and their association with viral and cellular proteins using fluorescence and correlative-light-and-electron-microscopy (CLEM). We specifically detected HIV-1 cDNA inside nuclei, but not in the cytoplasm.

View Article and Find Full Text PDF
Viruses in the Nucleus.

Cold Spring Harb Perspect Biol

August 2021

Viral infection is intrinsically linked to the capacity of the virus to generate progeny. Many DNA and some RNA viruses need to access the nuclear machinery and therefore transverse the nuclear envelope barrier through the nuclear pore complex. Viral genomes then become chromatinized either in their episomal form or upon integration into the host genome.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV-1) remains a major health threat. Viral capsid uncoating and nuclear import of the viral genome are critical for productive infection. The size of the HIV-1 capsid is generally believed to exceed the diameter of the nuclear pore complex (NPC), indicating that capsid uncoating has to occur prior to nuclear import.

View Article and Find Full Text PDF

Emergence of the novel pathogenic coronavirus SARS-CoV-2 and its rapid pandemic spread presents challenges that demand immediate attention. Here, we describe the development of a semi-quantitative high-content microscopy-based assay for detection of three major classes (IgG, IgA, and IgM) of SARS-CoV-2 specific antibodies in human samples. The possibility to detect antibodies against the entire viral proteome together with a robust semi-automated image analysis workflow resulted in specific, sensitive and unbiased assay that complements the portfolio of SARS-CoV-2 serological assays.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) is a powerful, broadly used microscopy-based technique that leverages fluorescently labeled nucleic acid probes to detect parts of the genome inside metaphase or interphase cell nuclei. In recent years, different methodologies developed to visualize genome topology and spatial relationships between genes have gained much attention as instruments to decode the relationship between chromatin structure and function. In addition to chromosome conformation capture-based techniques, highly multiplexed forms of FISH combined with high-throughput and super-resolution microscopy are used to map and spatially define contact frequencies between different genomic regions.

View Article and Find Full Text PDF

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causing coronavirus disease 2019 (COVID-19) has reached over five million confirmed cases worldwide, and numbers are still growing at a fast rate. Despite the wide outbreak of the infection, a remarkable asymmetry is observed in the number of cases and in the distribution of the severity of the COVID-19 symptoms in patients with respect to the countries/regions. In the early stages of a new pathogen outbreak, it is critical to understand the dynamics of the infection transmission, in order to follow contagion over time and project the epidemiological situation in the near future.

View Article and Find Full Text PDF

HIV-1 persists in a latent form during antiretroviral therapy, mainly in CD4 T cells, thus hampering efforts for a cure. HIV-1 infection is accompanied by metabolic alterations, such as oxidative stress, but the effect of cellular antioxidant responses on viral replication and latency is unknown. Here, we show that cells survive retroviral replication, both in vitro and in vivo in SIVmac-infected macaques, by upregulating antioxidant pathways and the intertwined iron import pathway.

View Article and Find Full Text PDF

Gold compounds have a long history of use as immunosuppressants, but their precise mechanism of action is not completely understood. Using our recently developed liver-on-a-chip platform we now show that gold compounds containing planar -heterocyclic carbene (NHC) ligands are potent ligands for the aryl hydrocarbon receptor (AHR). Further studies showed that the lead compound (MC3) activates TGFβ1 signaling and suppresses CD4 T-cell activation in vitro, in human and mouse T cells.

View Article and Find Full Text PDF

HIV-1 Nef promotes virus spread and disease progression by altering host cell transport and signaling processes through interaction with multiple host cell proteins. The N-terminal region in HIV-1 Nef encompassing residues 12 to 39 has been implicated in many Nef activities, including disruption of CD4 T lymphocyte polarization and homing to lymph nodes, antagonism of SERINC5 restriction to virion infectivity, downregulation of cell surface CD4 and major histocompatibility complex class I (MHC-I), release of Nef-containing extracellular vesicles, and phosphorylation of Nef by recruitment of the ef-ssociated inase omplex (NAKC). How this region mediates these pleiotropic functions is unclear.

View Article and Find Full Text PDF

HIV-1 recurrently targets active genes and integrates in the proximity of the nuclear pore compartment in CD4 T cells. However, the genomic features of these genes and the relevance of their transcriptional activity for HIV-1 integration have so far remained unclear. Here we show that recurrently targeted genes are proximal to super-enhancer genomic elements and that they cluster in specific spatial compartments of the T cell nucleus.

View Article and Find Full Text PDF

In each cell, the hierarchical organisation of the ∼2m DNA fibre ensures different nuclear functions, particularly proper gene expression. Chromosomes are non-randomly positioned occupying specific chromosome territories in the 3D nuclear space and circumventing several nuclear landmarks the Nuclear Envelope with embedded Nuclear Pore Complexes, Splicing Speckles, PML bodies and many others. At a higher level of organisation, similarly regulated chromatin regions cluster together in so called Topologically Associated Domains, TADs, while on a smaller scale, DNA sequences wrapped around histones dictate binding of transcription factors or inhibitors that determine the level of chromatin compaction.

View Article and Find Full Text PDF

Antiretroviral therapy (ART) is typically composed of a combination of three antiretroviral drugs and is the treatment of choice for people with human immunodeficiency virus type 1/acquired immune deficiency syndrome (HIV-1/AIDS). However, it is unable to impact on viral reservoirs, which harbour latent HIV-1 genomes that are able to reignite the infection upon treatment suspension. The aim of this study was to provide an estimate of the safety of the disease-modifying antirheumatic agent auranofin and its impact on the HIV-1 reservoir in humans under intensified ART.

View Article and Find Full Text PDF

Intestinal epithelial cells (IECs) are exposed to the low-oxygen environment present in the lumen of the gut. These hypoxic conditions on one hand are fundamental for the survival of the commensal microbiota and, on the other hand, favor the formation of a selective semipermeable barrier, allowing IECs to transport essential nutrients/water while keeping the sterile internal compartments separated from the lumen containing commensals. The hypoxia-inducible factor (HIF) complex, which allows cells to respond and adapt to fluctuations in oxygen levels, has been described as a key regulator in maintaining IEC barrier function by regulating their tight junction integrity.

View Article and Find Full Text PDF

Productive HIV-1 replication requires viral integrase (IN), which catalyzes integration of the viral genome into the host cell DNA. IN, however, is short lived and is rapidly degraded by the host ubiquitin-proteasome system. To identify the cellular factors responsible for HIV-1 IN degradation, we performed a targeted RNAi screen using a library of siRNAs against all components of the ubiquitin-conjugation machinery using high-content microscopy.

View Article and Find Full Text PDF

Nuclear entry of HIV-1 replication complexes through intact nuclear pore complexes is critical for successful infection. The host protein cleavage-and-polyadenylation-specificity-factor-6 (CPSF6) has been implicated in different stages of early HIV-1 replication. Applying quantitative microscopy of HIV-1 reverse-transcription and pre-integration-complexes (RTC/PIC), we show that CPSF6 is strongly recruited to nuclear replication complexes but absent from cytoplasmic RTC/PIC in primary human macrophages.

View Article and Find Full Text PDF

An improved dual-color reporter reveals how the fate of latent HIV-1 depends on where it integrates in the human genome.

View Article and Find Full Text PDF

Besides its essential role in the activation of HIV-1 gene expression, the viral Tat protein has the unusual property of trafficking in and out of cells. In contrast to Tat internalization, the mechanism involved in extracellular Tat release has so far remained elusive. Here we show that Tat secretion occurs through a Golgi-independent pathway requiring binding of Tat with three short, non-consecutive intracytoplasmic loops at the C-terminus of the cellular Na,K-ATPase pump alpha subunit.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5fj7gdvngjb89ir2pjhbd627ct5e15sl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once