Publications by authors named "Marina L Pridatchenko"

Proteome characterization relies heavily on tandem mass spectrometry (MS/MS) and is thus associated with instrumentation complexity, lengthy analysis time, and limited duty cycle. It was always tempting to implement approaches that do not require MS/MS, yet they were constantly failing to achieve a meaningful depth of quantitative proteome coverage within short experimental times, which is particularly important for clinical or biomarker-discovery applications. Here, we report on the first successful attempt to develop a truly MS/MS-free method, DirectMS1, for bottom-up proteomics.

View Article and Find Full Text PDF

Protealysin, a metalloprotease of Serratia proteamaculans, is the prototype of a subgroup of the M4 peptidase family. Protealysin-like proteases (PLPs) are widely spread in bacteria but also occur in fungi and certain archaea. The interest in PLPs is primarily due to their putative involvement in the bacterial pathogenesis in animals and plants.

View Article and Find Full Text PDF

We present an open-source, extensible search engine for shotgun proteomics. Implemented in Python programming language, IdentiPy shows competitive processing speed and sensitivity compared with the state-of-the-art search engines. It is equipped with a user-friendly web interface, IdentiPy Server, enabling the use of a single server installation accessed from multiple workstations.

View Article and Find Full Text PDF

In this work, we present the results of evaluation of a workflow that employs a multienzyme digestion strategy for MS1-based protein identification in "shotgun" proteomic applications. In the proposed strategy, several cleavage reagents of different specificity were used for parallel digestion of the protein sample followed by MS1 and retention time (RT) based search. Proof of principle for the proposed strategy was performed using experimental data obtained for the annotated 48-protein standard.

View Article and Find Full Text PDF

Affinity depletion of abundant proteins such as HSA is an important stage in routine sample preparation prior to MS/MS analysis of biological samples with high range of concentrations. Due to the charge competition effects in electrospray ion source that results in discrimination of the low-abundance species, as well as limited dynamic range of MS/MS, restricted typically by three orders of magnitude, the identification of low-abundance proteins becomes a challenge unless the sample is depleted from high-concentration compounds. This dictates a need for developing efficient separation technologies allowing fast and automated protein depletion.

View Article and Find Full Text PDF

Coupling of motion of the ion clouds with close m/z values is a well-established phenomenon for ion- trapping mass analyzers. In Fourier transform ion cyclotron resonance mass spectrometry it is known as ion coalescence. Recently, ion coalescence was demonstrated and semiquantitatively characterized for the Orbitrap mass analyzer as well.

View Article and Find Full Text PDF

The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.

View Article and Find Full Text PDF

Data-dependent tandem mass spectrometry (MS/MS) is one of the main techniques for protein identification in shotgun proteomics. In a typical LC-MS/MS workflow, peptide product ion mass spectra (MS/MS spectra) are compared with those derived theoretically from a protein sequence database. Scoring of these matches results in peptide identifications.

View Article and Find Full Text PDF

The amino acid sequence determines the individual protein three-dimensional structure and its functioning in an organism. Therefore, "reading" a protein sequence and determining its changes due to mutations or post-translational modifications is one of the objectives of proteomic experiments. The commonly utilized approach is gradient high-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry.

View Article and Find Full Text PDF

LC combined with MS/MS analysis of complex mixtures of protein digests is a reliable and sensitive method for characterization of protein phosphorylation. Peptide retention times (RTs) measured during an LC-MS/MS run depend on both the peptide sequence and the location of modified amino acids. These RTs can be predicted using the LC of biomacromolecules at critical conditions model (BioLCCC).

View Article and Find Full Text PDF