A comprehensive understanding of intercellular and cell-matrix interactions is essential for advancing our knowledge of cell biology. Existing techniques, such as fluorescence microscopy and electron microscopy, face limitations in resolution and sample preparation. Supravital lanthanoid staining provides new opportunities for detailed visualization of cellular metabolism and intercellular interactions.
View Article and Find Full Text PDFJ Biomed Mater Res A
April 2023
One of the approaches to restoring the structure of damaged cartilage tissue is an intra-articular injection of tissue-engineered medical products (TEMPs) consisting of biocompatible matrices loaded with cells. The most interesting are the absorbable matrices from decellularized tissues, provided that the cellular material is completely removed from them with the maximum possible preservation of the structure and composition of the natural extracellular matrix. The present study investigated the mechanical, biochemical, and biological properties of decellularized porcine cartilage microparticles (DCMps) obtained by techniques, differing only in physical treatments, such as freeze-thaw cycling (Protocol 1), supercritical carbon dioxide fluid (Protocol 2) and ultrasound (Protocol 3).
View Article and Find Full Text PDF