Unlabelled: Many species of proteobacterial methane-consuming bacteria (methanotrophs) form a hauberk-like envelope represented by a surface (S-) layer protein (SLP) matrix. While several proteins were predicted to be associated with the cell surface, the composition and function of the hauberk matrix remained elusive. Here, we report the identification of the genes encoding the hauberk-forming proteins in two gamma-proteobacterial (Type I) methanotrophs, 5GB1 (EQU24_15540) and 20Z (MEALZ_0971 and MEALZ_0972).
View Article and Find Full Text PDFThe proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive.
View Article and Find Full Text PDFConsidering the increasing interest in understanding the biotic component of methane removal from our atmosphere, it becomes essential to study the physiological characteristics and genomic potential of methanotroph isolates, especially their traits allowing them to adapt to elevated growth temperatures. The genetic signatures of species have been detected in many terrestrial and aquatic ecosystems. A small set of representatives of this genus has been isolated and maintained in culture.
View Article and Find Full Text PDFThe search for methanotrophs as plant-growth-promoting rhizobacteria (PGPR) presents an important contribution to mitigating the impact of global warming by restoring the natural soil potential for consuming methane while benefiting plants during droughts. Our in silico simulations suggest that water, produced as a byproduct of methane oxidation, can satisfy the cell growth requirement. In addition to water, methanotrophs can produce metabolites that stimulate plant growth.
View Article and Find Full Text PDFRhamnolipids (RLs) are well-studied biosurfactants naturally produced by pathogenic strains of Pseudomonas aeruginosa. Current methods to produce RLs in native and heterologous hosts have focused on carbohydrates as production substrate; however, methane (CH4) provides an intriguing alternative as a substrate for RL production because it is low cost and may mitigate greenhouse gas emissions. Here, we demonstrate RL production from CH4 by Methylotuvimicrobium alcaliphilum DSM19304.
View Article and Find Full Text PDFA number of minerals, such as copper, cobalt, and rare earth elements (REE), are essential modulators of microbial one-carbon metabolism. This chapter provides an overview of the gene expression study design and analysis protocols for uncovering REE-induced changes in methylotrophic bacteria. By interrogating relationships and differences in total gene expression induced by mineral micronutrients, a deeper understanding of gene regulation at a systems scale can be gained.
View Article and Find Full Text PDFHow complex, multi-component macromolecular machines evolved remains poorly understood. Here we reveal the evolutionary origins of the chemosensory machinery that controls flagellar motility in Escherichia coli. We first identify ancestral forms still present in Vibrio cholerae, Pseudomonas aeruginosa, Shewanella oneidensis and Methylomicrobium alcaliphilum, characterizing their structures by electron cryotomography and finding evidence that they function in a stress response pathway.
View Article and Find Full Text PDFNumerous hemerythrins, di-iron proteins, have been identified in prokaryote genomes, but in most cases their function remains elusive. Bacterial hemerythrin homologs (bacteriohemerythrins, Bhrs) may contribute to various cellular functions, including oxygen sensing, metal binding and antibiotic resistance. It has been proposed that methanotrophic Bhrs support methane oxidation by supplying oxygen to a core enzyme, particulate methane monooxygenase.
View Article and Find Full Text PDFMethylotuvimicrobium alcaliphilum 20Z is a promising platform strain for bioconversion of one-carbon (C1) substrates into value-added products. To carry out robust metabolic engineering with methylotrophic bacteria and to implement C1 conversion machinery in non-native hosts, systems-level evaluation and understanding of central C1 metabolism in methanotrophs under various conditions is pivotal but yet elusive. In this study, a genome-scale integrated approach was used to provide in-depth knowledge on the metabolic pathways of M.
View Article and Find Full Text PDFRare Earth Elements (REEs) control methanol utilization in both methane- and methanol-utilizing microbes. It has been established that the addition of REEs leads to the transcriptional repression of MxaFI-MeDH [a two-subunit methanol dehydrogenase (MeDH), calcium-dependent] and the activation of XoxF-MeDH (a one-subunit MeDH, lanthanum-dependent). Both enzymes are pyrroquinoline quinone-dependent alcohol dehydrogenases and show significant homology; however, they display different kinetic properties and substrate specificities.
View Article and Find Full Text PDFMicrobial methane utilization-a key node in the global carbon cycle-controls and often eliminates emission of methane into the atmosphere. The diversity and distribution of microbes capable of methane oxidation is astounding. However, from a biochemical point of view, only a very narrow set of unique enzymes underlies their metabolic capabilities.
View Article and Find Full Text PDFAnaerobic digestion (AD) of waste substrates, and renewable biomass and crop residues offers a means to generate energy-rich biogas. However, at present, AD-derived biogas is primarily flared or used for combined heat and power (CHP), in part due to inefficient gas-to-liquid conversion technologies. Methanotrophic bacteria are capable of utilizing methane as a sole carbon and energy source, offering promising potential for biological gas-to-liquid conversion of AD-derived biogas.
View Article and Find Full Text PDFMethane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The engineered strain 20Z/pBudK.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFMethylotrophy is a field of study dealing with microorganisms capable of utilization of compounds devoid of carbon-carbon bonds (C1 compounds). In this review, we highlight several emerging trends in methylotrophy. First, we discuss the significance of the recent discovery of lanthanide-dependent alcohol dehydrogenases for understanding both the occurrence and the distribution of methylotrophy functions among bacteria, and then we discuss the newly appreciated role of lanthanides in biology.
View Article and Find Full Text PDFBiological methane utilization, one of the main sinks of the greenhouse gas in nature, represents an attractive platform for production of fuels and value-added chemicals. Despite the progress made in our understanding of the individual parts of methane utilization, our knowledge of how the whole-cell metabolic network is organized and coordinated is limited. Attractive growth and methane-conversion rates, a complete and expert-annotated genome sequence, as well as large enzymatic, C-labeling, and transcriptomic datasets make Methylomicrobium alcaliphilum 20Z an exceptional model system for investigating methane utilization networks.
View Article and Find Full Text PDFThe genomes of the aerobic methanotrophs "" strain 73a and strain 175 were sequenced. Both strains were isolated from rice plants. strain 73a represents the first isolate of rice paddy cluster I, and strain 175 is the second representative of the recently described genus .
View Article and Find Full Text PDFInterpretation of bacteriohopanepolyol (BHP) biomarkers tracing microbiological processes in modern and ancient sediments relies on understanding environmental controls of production and preservation. BHPs from methanotrophs (35-aminoBHPs) were studied in methane-amended aerobic river-sediment incubations at different temperatures. It was found that: (i) With increasing temperature (4°C-40°C) a 10-fold increase in aminopentol (associated with Crenothrix and Methylobacter spp.
View Article and Find Full Text PDFMethane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements.
View Article and Find Full Text PDFAerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today.
View Article and Find Full Text PDFMethane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes.
View Article and Find Full Text PDFThe genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained.
View Article and Find Full Text PDFThree strains of methylotrophic Rhodocyclaceae (FAM1(T), RZ18-153 and RZ94) isolated from Lake Washington sediment samples were characterized. Based on phylogenetic analysis of 16S rRNA gene sequences the strains should be assigned to the genus Methyloversatilis. Similarly to other members of the family, the strains show broad metabolic capabilities and are able to utilize a number of organic acids, alcohols and aromatic compounds in addition to methanol and methylamine.
View Article and Find Full Text PDF