Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and cartilage/bone destruction with systemic comorbidities. Despite advances in understanding the aetiology of RA and novel biologic drugs, a substantial number of individuals with RA remain intolerant or resistant to these therapies. In this context, mesenchymal stem/stromal cell (MSC)-based therapy has emerged as an innovative therapeutic alternative to address unresolved treatment issues for patients with RA thanks to the immunomodulatory properties of these cells.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD) consisting of persistent and relapsing inflammatory processes of the intestinal mucosa are caused by genetic, environmental, and commensal microbiota factors. Despite recent advances in clinical treatments aiming to decrease inflammation, nearly 30% of patients treated with biologicals experienced drawbacks including loss of response, while others can develop severe side effects. Hence, novel effective treatments are highly needed.
View Article and Find Full Text PDFThe K/BxN mouse model of rheumatoid arthritis (RA) closely resembles the human disease. In this model, arthritis results from activation of autoreactive KRN T cells recognizing the glycolytic enzyme glucose-6-phosphate isomerase (GPI) autoantigen, which provides help to GPI-specific B cells, resulting in the production of pathogenic anti-GPI antibodies that ultimately leads to arthritis symptoms from 4 weeks of age. Vasoactive intestinal peptide (VIP) is a neuropeptide broadly distributed in the central and peripheral nervous system that is also expressed in lymphocytes and other immune cell types.
View Article and Find Full Text PDFGalectin-1 is a -galactoside-binding lectin, ubiquitously expressed in stromal, epithelial, and different subsets of immune cells. Galectin-1 is the prototype member of the galectin family which shares specificity with -galactoside containing proteins and lipids. Immunomodulatory functions have been ascribed to endogenous galectin-1 due to its induction of T cell apoptosis, inhibitory effects of neutrophils and T cell trafficking.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and progressive joint destruction and is a primary cause of disability worldwide. Despite the existence of numerous anti-rheumatic drugs, a significant number of patients with RA do not respond or are intolerant to current treatments. Mesenchymal stem/stromal cell (MSCs) therapy represents a promising therapeutic tool to treat RA, mainly attributable to the immunomodulatory effects of these cells.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects the lining of the synovial joints leading to stiffness, pain, inflammation, loss of mobility, and erosion of joints. Its pathogenesis is related to aberrant immune responses against the synovium. Dysfunction of innate and adaptive immunity, including dysregulated cytokine networks and immune complex-mediated complement activation, are involved in the progression of RA.
View Article and Find Full Text PDFBackground And Aims: Mesenchymal stem cells [MSCs] are used in preclinical and clinical studies for treatment of immune-mediated disorders, thanks to their immunomodulatory properties. Cell therapy with MSCs induces multiple effects in the immune system which ultimately lead to increase in the number of immune cells with regulatory phenotype. In this study, we investigated whether the beneficial effects of MSC therapy are maintained in the long term in a clinically relevant mouse model of colitis.
View Article and Find Full Text PDFNanoparticles derived from the elongated flexuous capsids of (TuMV) have been shown to be efficient tools for antibody sensing with a very high sensitivity if adequately functionalized with the corresponding epitopes. Taking advantage of this possibility, TuMV virus-like particles (VLPs) have been genetically derivatized with a peptide from the chaperonin Hsp60, a protein described to be involved in inflammation processes and autoimmune diseases. Antibodies against the peptide have been previously shown to have a diagnostic value in at least one autoimmune disease, multiple sclerosis.
View Article and Find Full Text PDFInt J Mol Sci
June 2018
Mesenchymal stem cells (MSCs) have emerged as a promising treatment for inflammatory diseases. The immunomodulatory effect of MSCs takes place both by direct cell-to-cell contact and by means of soluble factors that leads to an increased accumulation of regulatory immune cells at the sites of inflammation. Similar efficacy of MSCs has been described regardless of the route of administration used, the inflammation conditions and the major histocompatibility complex context.
View Article and Find Full Text PDFEvidence indicates an intimate connection between the neuroendocrine and the immune systems. A number of and studies have demonstrated growth hormone (GH) involvement in immune regulation. The GH receptor is expressed by several leukocyte subpopulations, and GH modulates immune cell proliferation and activity.
View Article and Find Full Text PDFBladder cancer is a current clinical and social problem. At diagnosis, most patients present with nonmuscle-invasive tumors, characterized by a high recurrence rate, which could progress to muscle-invasive disease and metastasis. Bone morphogenetic protein (BMP)-dependent signaling arising from stromal bladder tissue mediates urothelial homeostasis by promoting urothelial cell differentiation.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have a large potential in cell therapy for treatment of inflammatory and autoimmune diseases, thanks to their immunomodulatory properties. The encouraging results in animal models have initiated the translation of MSC therapy to clinical trials. In cell therapy protocols with MSCs, administered intravenously, several studies have shown that a small proportion of infused MSCs can traffic to the draining lymph nodes (LNs).
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are multipotent stromal cells with immunomodulatory properties. They have emerged as a very promising treatment for autoimmunity and inflammatory diseases such as rheumatoid arthritis. Previous studies have demonstrated that MSCs, administered systemically, migrate to lymphoid tissues associated with the inflammatory site where functional MSC-induced immune cells with a regulatory phenotype were increased mediating the immunomodulatory effects of MSCs.
View Article and Find Full Text PDFModulation of innate immune responses in rheumatoid arthritis and other immune-mediated disorders is of critical importance in the clinic since a growing body of information has shown the key contribution of dysregulated innate responses in the progression of the disease. Mesenchymal stromal cells (MSCs) are the focus of intensive efforts worldwide due to their key role in tissue regeneration and modulation of inflammation. In this study, we define innate immune responses occurring during the early course of treatment with a single dose of expanded adipose-derived MSCs (eASCs) in established collagen-induced arthritis.
View Article and Find Full Text PDFBackground: Application of mesenchymal stem/stromal cells (MSCs) in treating different disorders, in particular osteo-articular diseases, is currently under investigation. We have already documented the safety of administrating human adipose tissue-derived stromal MSCs (hASCs) in immunodeficient mice. In the present study, we investigated whether the persistence of MSC is affected by the degree of inflammation and related to the therapeutic effect in two inflammatory models of arthritis.
View Article and Find Full Text PDFUnlabelled: Our aim is to study the behavior of memory Th cells (Th17, Th17/1, and Th1 profiles) from early rheumatoid arthritis (eRA) patients after their in vitro activation/expansion to provide information about its contribution to RA chronicity. Moreover, we analyzed the potential involvement of vasoactive intestinal peptide (VIP) as an endogenous healing mediator. CD4(+)CD45RO(+) T cells from PBMCs of HD and eRA were activated/expanded in vitro in the presence/absence of VIP.
View Article and Find Full Text PDFThe cytokine microenvironment modulates CD4 T cell differentiation causing the shift of naïve CD4 T cells into different cell subsets. This process is also regulated by modulators such as vasoactive intestinal peptide (VIP), a neuropeptide with known immunomodulatory properties on CD4 T cells that exert this action through specific receptors, vasoactive intestinal peptide receptor (VPAC)1 and VPAC2. Our results show that the pattern of VIP receptors expression ratio is modified during Th17 differentiation.
View Article and Find Full Text PDFThe retinoblastoma gene product (pRb) controls proliferation and differentiation processes in stratified epithelia. Importantly, and in contrast to other tissues, Rb deficiency does not lead to spontaneous skin tumor formation. As the cyclin-dependent kinase inhibitor p21 regulates proliferation and differentiation in the absence of pRb, we analyzed the consequences of deleting p21 in pRb-ablated stratified epithelia (hereafter pRb(ΔEpi);p21-/-).
View Article and Find Full Text PDFProtein transduction offers a great therapeutic potential by efficient delivery of biologically active cargo into cells. The Adenovirus Dd (Dodecahedron) has recently been shown to deliver proteins fused to the tandem WW(2-3-4) structural domains from the E3 ubiquitin ligase Nedd4. In this study, we conclusively show that Dd is able to efficiently deliver cargo inside living cells, which mainly localize in fast moving endocytic vesicles, supporting active transport along the cytoskeleton.
View Article and Find Full Text PDFFanconi anemia (FA) is an inherited genetic disorder associated with BM failure and cancer predisposition. In the present study, we sought to elucidate the role of microRNAs (miRNAs) in the hematopoietic defects observed in FA patients. Initial studies showed that 3 miRNAs, hsa-miR-133a, hsa-miR-135b, and hsa-miR-181c, were significantly down-regulated in lymphoblastoid cell lines and fresh peripheral blood cells from FA patients.
View Article and Find Full Text PDF