Chemical composition and antioxidative, genotoxic and cytotoxic potential of essential oil (EO) and post-distillation waste (PDW) of Serbian Juniperus communis L. var. saxatilis Pall.
View Article and Find Full Text PDFThe purpose of this work was to determine the chemical profile of stinging nettle and to provide an insight into the mechanisms by which it ameliorates the immune response. Qualitative and quantitative liquid chromatography tandem mass spectrometry analyses indicated that phenolic acids (5-O-caffeoylquinic acid as dominant) and flavonol glycosides (rutin, isoquercitrin, and kaempferol 3-O-glucoside) are present in the aerial parts, while lignans (secoisolariciresinol, 9,9'-bisacetyl-neo-olivil and their glucosides) were detected in the root. Herb and root extracts expressed selective inhibition toward cyclooxygenase and lipoxygenase branches in human platelets: root extracts were better at inhibiting thromboxane production, while herb extracts were more specific toward inhibition of 12-lipoxygenase pathway.
View Article and Find Full Text PDFEssential oils possess strong antimicrobial activity, even against multiresistant Helicobacter pylori. Available therapies against H. pylori infection have multiple disadvantages, indicating a great need for a development of new therapeutics.
View Article and Find Full Text PDFA method for quantification of 45 plant phenolics (including benzoic acids, cinnamic acids, flavonoid aglycones, C- and O-glycosides, coumarins, and lignans) in plant extracts was developed, based on reversed phase HPLC separation of extract components, followed by tandem mass spectrometric detection. The phenolic profile of 80% MeOH extracts of the stinging nettle (Urtica dioica L.) herb, root, stem, leaf and inflorescence was obtained by using this method.
View Article and Find Full Text PDFBackground: The St John's Wort (Hypericum perforatum; Clusiaceae) has been used in traditional and modern medicine for a long time due to its high content of biologically active phenolics. The purpose of this work was to develop a method for their fractionation and identification, and to determine the most active antioxidant compounds in plant extract.
Results: An LC-MS method which enables fast qualitative and semiquantitative analysis was developed.