Publications by authors named "Marina Francis"

Background: Lipopolysaccharide (LPS), an endotoxin within gram-negative bacteria, is associated with systemic acute inflammatory response after invading living tissues and results in sepsis. The liver and kidney are both major target organs in sepsis. Septic acute hepatic-renal injury is a serious clinical condition with high risk of morbidity and mortality.

View Article and Find Full Text PDF

The kidneys are radiosensitive and dose-limiting organs for radiotherapy (RT) targeting abdominal and paraspinal tumors. Excessive radiation doses to the kidneys ultimately lead to radiation nephropathy. Our prior work unmasked a novel role for the lipid-modifying enzyme, sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b), in regulating the response of renal podocytes to radiation injury.

View Article and Find Full Text PDF

Patients undergoing radiotherapy (RT) for various tumors localized in the abdomen or pelvis often suffer from radiation nephrotoxicity as collateral damage. Renal podocytes are vulnerable targets for ionizing radiation and contribute to radiation-induced nephropathies. Our prior work previously highlighted the importance of the lipid-modifying enzyme sphingomyelinase acid phosphodiesterase like 3b (SMPDL3b) in modulating the radiation response in podocytes and glomerular endothelial cells.

View Article and Find Full Text PDF

Head and neck cancer (HNC) is the sixth most common human malignancy with a global incidence of 650,000 cases per year. Radiotherapy (RT) is commonly used as an effective therapy to treat tumours as a definitive or adjuvant treatment. Despite the substantial advances in RT contouring and dosage delivery, patients suffer from various radiation-induced complications, among which are toxicities to the nervous tissues in the head and neck area.

View Article and Find Full Text PDF

Although once considered as structural components of eukaryotic biological membranes, research in the past few decades hints at a major role of bioactive sphingolipids in mediating an array of physiological processes including cell survival, proliferation, inflammation, senescence, and death. A large body of evidence points to a fundamental role for the sphingolipid metabolic pathway in modulating the DNA damage response (DDR). The interplay between these two elements of cell signaling determines cell fate when cells are exposed to metabolic stress or ionizing radiation among other genotoxic agents.

View Article and Find Full Text PDF

The intracellular molecular pathways involved in radiation-induced nephropathy are still poorly understood. Glomerular endothelial cells are key components of the structure and function of the glomerular filtration barrier but little is known about the mechanisms implicated in their injury and repair. The current study establishes the response of immortalized human glomerular endothelial cells (GEnC) to ionizing radiation (IR).

View Article and Find Full Text PDF