Publications by authors named "Marina Fomina"

Article Synopsis
  • The filamentous growth mode of fungi allows them to adapt effectively to various environmental stresses by modifying their structure and behavior, especially in metal-rich habitats.
  • Research using a tessellated agar tile system has revealed the fungi's negative response to toxic metals and their unique growth strategies, like phalanx and guerrilla tactics, to survive challenging conditions.
  • Insights from submerged growth studies on the thermophilic fungus Thielavia terrestris indicate that specific growth forms (pelleted vs. dispersed) are influenced by a lag phase and cAMP signaling, which can enhance our understanding of fungal applications in biotechnology.
View Article and Find Full Text PDF

The photoprocesses of diethylamino derivatives of 1,4- and 1,3-distyrylbenzenes in MeCN were studied using absorption, luminescence, H NMR, and laser kinetic spectroscopy. Compounds and undergo intersystem crossing to the triplet state and exhibit delayed fluorescence. It was concluded that dye radical anions and radical cations are formed upon dismutation of the triplet state in the presence of an electron donor or acceptor.

View Article and Find Full Text PDF

SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances.

View Article and Find Full Text PDF

A bis(aza-18-crown-6)-containing 2,5-di(benzylidene)cyclopentanone and a bis(ammoniopropyl) derivative of 1,2-di(4-pyridyl)ethylene in MeCN were found to form a supramolecular charge-transfer complex, which can act as an "off-on" fluorescent sensor for the Ca and 1,12-dodecanediammonium ions. The molecular structure of this complex in solution was studied by density functional theory calculations.

View Article and Find Full Text PDF

The toxic action of CuO-Ag Janus particles and a bicomponent mixture of CuO and Ag particles have been studied against a recombinant strain Escherichia coli K12 TG1 with cloned luxCDABE genes of marine bacteria Photobacterium leiognathi 54D10. An original method was used for the preparation CuO-Ag Janus like  nanoparticles by simultaneous electrical explosion of twisted Cu and Ag wires in a mixture of argon and oxygen gases. The bioluminescence inhibition on recombinant strain E.

View Article and Find Full Text PDF

A series of symmetrical dibenzylidene derivatives of cyclobutanone were synthesized with the goal of studying the physicochemical properties of cross-conjugated dienones (ketocyanine dyes). The structures of the products were established and studied by X-ray diffraction and by NMR and electronic spectroscopy. All the products had ,-geometry.

View Article and Find Full Text PDF

A series of symmetrical dibenzylidene derivatives of cyclohexanone were synthesized with the goal of studying the physicochemical properties of cross-conjugated dienones (ketocyanine dyes). The structures of the products were established and studied by X-ray diffraction, NMR spectroscopy, and electronic spectroscopy. All products had the ,-geometry.

View Article and Find Full Text PDF

Fungi are one of the most biogeochemically active components of the soil microbiome, becoming particularly important in metal polluted terrestrial environments. There is scant information on the mycobiota of uranium (U) polluted sites and the effect of metallic depleted uranium (DU) stress on fungal communities in soil has not been reported. The present study aimed to establish the effect of DU contamination on a fungal community in soil using a culture-independent approach, fungal ribosomal intergenic spacer analysis (F-RISA).

View Article and Find Full Text PDF

Microbe-based decontamination of phenol-polluted environments has significant advantages over physical and chemical approaches by being relatively cheaper and ensuring complete phenol degradation. There is a need to search for commercially prospective bacterial strains that are resistant to phenol and other co-pollutants, e.g.

View Article and Find Full Text PDF

The article presents the data of scanning electron microscopy of the surface morphology of tantalum coatings produced by electrospark alloying. To perform the statistical analysis of open porosity and morphological parameters of the coatings, raw digital images of the structure were studied. In this case, "AGPM" software for the analysis of geometric parameters of microobjects was used.

View Article and Find Full Text PDF

This work elucidates spatio-temporal aspects of the biogeochemical transformation of copper mobilized from malachite (Cu (CO )(OH) ) and bioaccumulated within Aspergillus niger colonies when grown on different inorganic nitrogen sources. It was shown that the use of either ammonium or nitrate determined how copper was distributed within the colony and its microenvironment and the copper oxidation state and succession of copper coordinating ligands within the biomass. Nitrate-grown colonies yielded ∼1.

View Article and Find Full Text PDF

Biosorption is a physico-chemical and metabolically-independent process based on a variety of mechanisms including absorption, adsorption, ion exchange, surface complexation and precipitation. Biosorption processes are highly important in the environment and conventional biotreatment processes. As a branch of biotechnology, biosorption has been aimed at the removal or recovery of organic and inorganic substances from solution by biological material which can include living or dead microorganisms and their components, seaweeds, plant materials, industrial and agricultural wastes and natural residues.

View Article and Find Full Text PDF

Fungi can be highly efficient biogeochemical agents and accumulators of soluble and particulate forms of metals. This work aims to understand some of the physico-chemical mechanisms involved in toxic metal transformations focusing on the speciation of metals accumulated by fungi and mycorrhizal associations. The amorphous state or poor crystallinity of metal complexes within biomass and relatively low metal concentrations make the determination of metal speciation in biological systems a challenging problem but this can be overcome by using synchrotron-based element-specific X-ray absorption spectroscopy (XAS) techniques.

View Article and Find Full Text PDF

In this research, we investigate zinc phosphate transformations by Paxillus involutus/pine ectomycorrhizas using zinc-resistant and zinc-sensitive strains of the ectomycorrhizal fungus under high- and low-phosphorus conditions to further understand fungal roles in the transformation of toxic metal minerals in the mycorrhizosphere. Mesocosm experiments with ectomycorrhizas were performed under sterile conditions with zinc phosphate localized in cellophane bags: zinc and phosphorus mobilization and uptake by the ectomycorrhizal biomass were analyzed. In the presence of a phosphorus source, an ectomycorrhizal association with a zinc-resistant strain accumulated the least zinc compared to a zinc-sensitive ectomycorrhizal association and non-mycorrhizal plants.

View Article and Find Full Text PDF

Metal-contaminated soils often contain a spatially heterogeneous distribution of metal concentrations, and the ability of fungi to colonize such metal-contaminated domains will be influenced by the nutritional resources available. An experimental system based upon tessellated agar tiles was used to study the influence of nutrients upon the ability of soil fungi Trichoderma virens and Clonostachys rosea to colonize spatially discrete toxic metal (copper and cadmium) containing domains. The growth parameters recorded demonstrated a decrease in apparent metal toxicity with increasing concentration of available carbon source.

View Article and Find Full Text PDF